89 research outputs found

    Dysnatremia is a predictor for morbidity and mortality in hospitalized patients with COVID-19

    Get PDF
    Context: Dysnatremia is an independent predictor of mortality in patients with bacterial pneumonia. There is paucity of data about the incidence and prognostic impact of abnormal sodium concentration in patients with coronavirus disease 2019 (COVID-19). Objective: This work aimed to examine the association of serum sodium during hospitalization with key clinical outcomes, including mortality, need for advanced respiratory support and acute kidney injury (AKI), and to explore the role of serum sodium as a marker of inflammatory response in COVID-19. Methods: This retrospective longitudinal cohort study, including all adult patients who presented with COVID-19 to 2 hospitals in London over an 8-week period, evaluated the association of dysnatremia (serum sodium  145 mmol/L, hyponatremia, and hypernatremia, respectively) at several time points with inpatient mortality, need for advanced ventilatory support, and AKI. Results: The study included 488 patients (median age, 68 years). At presentation, 24.6% of patients were hyponatremic, mainly due to hypovolemia, and 5.3% hypernatremic. Hypernatremia 2 days after admission and exposure to hypernatremia at any time point during hospitalization were associated with a 2.34-fold (95% CI, 1.08-5.05; P = .0014) and 3.05-fold (95% CI, 1.69-5.49; P < .0001) increased risk of death, respectively, compared to normonatremia. Hyponatremia at admission was linked with a 2.18-fold increase in the likelihood of needing ventilatory support (95% CI, 1.34-3.45, P = .0011). Hyponatremia was not a risk factor for in-hospital mortality, except for the subgroup of patients with hypovolemic hyponatremia. Sodium values were not associated with the risk for AKI and length of hospital stay. Conclusion: Abnormal sodium levels during hospitalization are risk factors for poor prognosis, with hypernatremia and hyponatremia being associated with a greater risk of death and respiratory failure, respectively. Serum sodium values could be used for risk stratification in patients with COVID-19

    Loss of Arc renders the visual cortex impervious to the effects of sensory experience or deprivation

    Get PDF
    A myriad of mechanisms have been suggested to account for the full richness of visual cortical plasticity. We found that visual cortex lacking Arc is impervious to the effects of deprivation or experience. Using intrinsic signal imaging and chronic visually evoked potential recordings, we found that Arc−/− mice did not exhibit depression of deprived-eye responses or a shift in ocular dominance after brief monocular deprivation. Extended deprivation also failed to elicit a shift in ocular dominance or open-eye potentiation. Moreover, Arc−/− mice lacked stimulus-selective response potentiation. Although Arc−/− mice exhibited normal visual acuity, baseline ocular dominance was abnormal and resembled that observed after dark-rearing. These data suggest that Arc is required for the experience-dependent processes that normally establish and modify synaptic connections in visual cortex.Howard Hughes Medical InstituteNational Science Foundation (U.S.

    Functional Characterization of the Dendritically Localized mRNA Neuronatin in Hippocampal Neurons

    Get PDF
    Local translation of dendritic mRNAs plays an important role in neuronal development and synaptic plasticity. Although several hundred putative dendritic transcripts have been identified in the hippocampus, relatively few have been verified by in situ hybridization and thus remain uncharacterized. One such transcript encodes the protein neuronatin. Neuronatin has been shown to regulate calcium levels in non-neuronal cells such as pancreatic or embryonic stem cells, but its function in mature neurons remains unclear. Here we report that neuronatin is translated in hippocampal dendrites in response to blockade of action potentials and NMDA-receptor dependent synaptic transmission by TTX and APV. Our study also reveals that neuronatin can adjust dendritic calcium levels by regulating intracellular calcium storage. We propose that neuronatin may impact synaptic plasticity by modulating dendritic calcium levels during homeostatic plasticity, thereby potentially regulating neuronal excitability, receptor trafficking, and calcium dependent signaling

    New approaches to selection system design in healthcare: The practical and theoretical relevance of a modular approach

    Get PDF
    This chapter presents a modular approach to healthcare selection system design. Contrary to the traditional holistic view on selection procedures, a modular approach highlights the components underlying selection procedures. Our framework identifies seven key design components of selection procedures (The stimulus format, contextualization, stimulus presentation consistency, the response format, response evaluation consistency, information source, and instructions) and reviews studies in the healthcare selection literature that compared the effect of these components on key selection outcomes. A modular approach allows (1) gaining insights into how the different components underlying selection procedures affect selection outcomes and (2) drawing conceptual similarities between components of different selection procedures. At a practical level, a modular approach permits developing a myriad of new selection procedures by "mixing and matching" different building blocks. We present two case studies and future research avenues to further illustrate these merits of a modular approach

    Targeted treatments for fragile X syndrome

    Get PDF
    Fragile X syndrome (FXS) is the most common identifiable genetic cause of intellectual disability and autistic spectrum disorders (ASD), with up to 50% of males and some females with FXS meeting criteria for ASD. Autistic features are present in a very high percent of individuals with FXS, even those who do not meet full criteria for ASD. Recent major advances have been made in the understanding of the neurobiology and functions of FMRP, the FMR1 (fragile X mental retardation 1) gene product, which is absent or reduced in FXS, largely based on work in the fmr1 knockout mouse model. FXS has emerged as a disorder of synaptic plasticity associated with abnormalities of long-term depression and long-term potentiation and immature dendritic spine architecture, related to the dysregulation of dendritic translation typically activated by group I mGluR and other receptors. This work has led to efforts to develop treatments for FXS with neuroactive molecules targeted to the dysregulated translational pathway. These agents have been shown to rescue molecular, spine, and behavioral phenotypes in the FXS mouse model at multiple stages of development. Clinical trials are underway to translate findings in animal models of FXS to humans, raising complex issues about trial design and outcome measures to assess cognitive change that might be associated with treatment. Genes known to be causes of ASD interact with the translational pathway defective in FXS, and it has been hypothesized that there will be substantial overlap in molecular pathways and mechanisms of synaptic dysfunction between FXS and ASD. Therefore, targeted treatments developed for FXS may also target subgroups of ASD, and clinical trials in FXS may serve as a model for the development of clinical trial strategies for ASD and other cognitive disorders

    Accelerating functional gene discovery in osteoarthritis

    Get PDF
    Osteoarthritis causes debilitating pain and disability, resulting in a considerable socioeconomic burden, yet no drugs are available that prevent disease onset or progression. Here, we develop, validate and use rapid-throughput imaging techniques to identify abnormal joint phenotypes in randomly selected mutant mice generated by the International Knockout Mouse Consortium. We identify 14 genes with functional involvement in osteoarthritis pathogenesis, including the homeobox gene Pitx1, and functionally characterize 6 candidate human osteoarthritis genes in mouse models. We demonstrate sensitivity of the methods by identifying age-related degenerative joint damage in wild-type mice. Finally, we phenotype previously generated mutant mice with an osteoarthritis-associated polymorphism in the Dio2 gene by CRISPR/Cas9 genome editing and demonstrate a protective role in disease onset with public health implications. We hope this expanding resource of mutant mice will accelerate functional gene discovery in osteoarthritis and offer drug discovery opportunities for this common, incapacitating chronic disease

    A midbrain circuit that mediates headache aversiveness

    No full text
    These data demonstrate a direct connection between the ventrolateral periaqueductal gray (vlPAG) and the ventral tegmental area (VTA) that contributes to headache aversiveness. Many VTA neurons receive monosynaptic input from the vlPAG, and cranial nociceptive input increases Fos expression in VTA-projecting vlPAG neurons. Activation of PAG inputs to the VTA induces avoidance behavior, while inactivation of these projections induces a place preference only in animals with headache. This work identifies a distinct pathway that mediates cranial nociceptive aversiveness. Source data for electrophysiology and Fos counting in the vlPAG are provided here. A summary of behavioral data is also provided.THIS DATASET IS ARCHIVED AT DANS/EASY, BUT NOT ACCESSIBLE HERE. TO VIEW A LIST OF FILES AND ACCESS THE FILES IN THIS DATASET CLICK ON THE DOI-LINK ABOV

    Exchange Inlet Design for Enhanced RBCC Rocket-Air Mixing

    No full text
    corecore