19 research outputs found

    Quantification of Cell Signaling Networks Using Kinase Activity Chemosensors

    Get PDF
    The ability to directly determine endogenous kinase activity in tissue homogenates provides valuable insights into signaling aberrations that underlie disease phenotypes. When activity data is collected across a panel of kinases, a unique “signaling fingerprint” is generated that allows for discrimination between diseased and normal tissue. Here we describe the use of peptide-based kinase activity sensors to fingerprint the signaling changes associated with disease states. This approach leverages the phosphorylation-sensitive sulfonamido-oxine (Sox) fluorophore to provide a direct readout of kinase enzymatic activity in unfractionated tissue homogenates from animal models or clinical samples. To demonstrate the application of this technology, we focus on a rat model of nonalcoholic fatty liver disease (NAFLD). Sox-based activity probes allow for the rapid and straightforward analysis of changes in kinase enzymatic activity associated with disease states, providing leads for further investigation using traditional biochemical approaches

    A Model of a MAPK•Substrate Complex in an Active Conformation: A Computational and Experimental Approach

    Get PDF
    The mechanisms by which MAP kinases recognize and phosphorylate substrates are not completely understood. Efforts to understand the mechanisms have been compromised by the lack of MAPK-substrate structures. While MAPK-substrate docking is well established as a viable mechanism for bringing MAPKs and substrates into close proximity the molecular details of how such docking promotes phosphorylation is an unresolved issue. In the present study computer modeling approaches, with restraints derived from experimentally known interactions, were used to predict how the N-terminus of Ets-1 associates with ERK2. Interestingly, the N-terminus does not contain a consensus-docking site ((R/K)2-3-X2-6-ΦA-X-ΦB, where Φ is aliphatic hydrophobic) for ERK2. The modeling predicts that the N-terminus of Ets-1 makes important contributions to the stabilization of the complex, but remains largely disordered. The computer-generated model was used to guide mutagenesis experiments, which support the notion that Leu-11 and possibly Ile-13 and Ile-14 of Ets-1 1-138 (Ets) make contributions through binding to the hydrophobic groove of the ERK2 D-recruiting site (DRS). Based on the modeling, a consensus-docking site was introduced through the introduction of an arginine at residue 7, to give the consensus 7RK-X2-ΦA-X-ΦB13. This results in a 2-fold increase in kcat/Km for the phosphorylation of Ets by ERK2. Similarly, the substitution of the N-terminus for two different consensus docking sites derived from Elk-1 and MKK1 also improves kcat/Km by two-fold compared to Ets. Disruption of the N-terminal docking through deletion of residues 1-23 of Ets results in a 14-fold decrease in kcat/Km, with little apparent change in kcat. A peptide that binds to the DRS of ERK2 affects Km, but not kcat. Our kinetic analysis suggests that the unstructured N-terminus provides 10-fold uniform stabilization of the ground state ERK2•Ets•MgATP complex and intermediates of the enzymatic reaction

    Calcium/Calmodulin Stimulates the Autophosphorylation of Elongation Factor 2 Kinase on Thr-348 and Ser-500 To Regulate Its Activity and Calcium Dependence

    No full text
    Eukaryotic elongation factor 2 kinase (eEF-2K) is an atypical protein kinase regulated by Ca<sup>2+</sup> and calmodulin (CaM). Its only known substrate is eukaryotic elongation factor 2 (eEF-2), whose phosphorylation by eEF-2K impedes global protein synthesis. To date, the mechanism of eEF-2K autophosphorylation has not been fully elucidated. To investigate the mechanism of autophosphorylation, human eEF-2K was coexpressed with λ-phosphatase and purified from bacteria in a three-step protocol using a CaM affinity column. Purified eEF-2K was induced to autophosphorylate by incubation with Ca<sup>2+</sup>/CaM in the presence of MgATP. Analyzing tryptic or chymotryptic peptides by mass spectrometry monitored the autophosphorylation over 0–180 min. The following five major autophosphorylation sites were identified: Thr-348, Thr-353, Ser-445, Ser-474, and Ser-500. In the presence of Ca<sup>2+</sup>/CaM, robust phosphorylation of Thr-348 occurs within seconds of addition of MgATP. Mutagenesis studies suggest that phosphorylation of Thr-348 is required for substrate (eEF-2 or a peptide substrate) phosphorylation, but not self-phosphorylation. Phosphorylation of Ser-500 lags behind the phosphorylation of Thr-348 and is associated with the Ca<sup>2+</sup>-independent activity of eEF-2K. Mutation of Ser-500 to Asp, but not Ala, renders eEF-2K Ca<sup>2+</sup>-independent. Surprisingly, this Ca<sup>2+</sup>-independent activity requires the presence of CaM
    corecore