42 research outputs found

    Inflating in a Trough: Single-Field Effective Theory from Multiple-Field Curved Valleys

    Get PDF
    We examine the motion of light fields near the bottom of a potential valley in a multi-dimensional field space. In the case of two fields we identify three general scales, all of which must be large in order to justify an effective low-energy approximation involving only the light field, ℓ\ell. (Typically only one of these -- the mass of the heavy field transverse to the trough -- is used in the literature when justifying the truncation of heavy fields.) We explicitly compute the resulting effective field theory, which has the form of a P(ℓ,X)P(\ell,X) model, with X=−1/2(∂ℓ)2X = - 1/2(\partial \ell)^2, as a function of these scales. This gives the leading ways each scale contributes to any low-energy dynamics, including (but not restricted to) those relevant for cosmology. We check our results with the special case of a homogeneous roll near the valley floor, placing into a broader context recent cosmological calculations that show how the truncation approximation can fail. By casting our results covariantly in field space, we provide a geometrical criterion for model-builders to decide whether or not the single-field and/or the truncation approximation is justified, identify its leading deviations, and to efficiently extract cosmological predictions.Comment: 28 pages + 3 appendices, references added and typos corrected, matches published versio

    Bound-State Variational Wave Equation For Fermion Systems In QED

    Full text link
    We present a formulation of the Hamiltonian variational method for QED which enables the derivation of relativistic few-fermion wave equation that can account, at least in principle, for interactions to any order of the coupling constant. We derive a relativistic two-fermion wave equation using this approach. The interaction kernel of the equation is shown to be the generalized invariant M-matrix including all orders of Feynman diagrams. The result is obtained rigorously from the underlying QFT for arbitrary mass ratio of the two fermions. Our approach is based on three key points: a reformulation of QED, the variational method, and adiabatic hypothesis. As an application we calculate the one-loop contribution of radiative corrections to the two-fermion binding energy for singlet states with arbitrary principal quantum number nn, and l=J=0l =J=0. Our calculations are carried out in the explicitly covariant Feynman gauge.Comment: 26 page

    Late Inspiral and Merger of Binary Black Holes in Scalar-Tensor Theories of Gravity

    Full text link
    Gravitational wave observations will probe non-linear gravitational interactions and thus enable strong tests of Einstein's theory of general relativity. We present a numerical relativity study of the late inspiral and merger of binary black holes in scalar-tensor theories of gravity. We consider black hole binaries in an inhomogeneous scalar field, specifically binaries inside a scalar field bubble, in some cases with a potential. We calculate the emission of dipole radiation. We also show how these configurations trigger detectable differences between gravitational waves in scalar-tensor gravity and the corresponding waves in general relativity. We conclude that, barring an external mechanism to induce dynamics in the scalar field, scalar-tensor gravity binary black holes alone are not capable of awaking a dormant scalar field, and are thus observationally indistinguishable from their general relativistic counterparts.Comment: 4 pages, 5 figures, 1 tabl

    Model-Independent Comparisons of Pulsar Timings to Scalar-Tensor Gravity

    Full text link
    Observations of pulsar timing provide strong constraints on scalar-tensor theories of gravity, but these constraints are traditionally quoted as limits on the microscopic parameters (like the Brans-Dicke coupling, for example) that govern the strength of scalar-matter couplings at the particle level in particular models. Here we present fits to timing data for several pulsars directly in terms of the phenomenological couplings (masses, scalar charges, moment of inertia sensitivities and so on) of the stars involved, rather than to the more microscopic parameters of a specific model. For instance, for the double pulsar PSR J0737-3039A/B we find at the 68% confidence level that the masses are bounded by 1.28 < m_A/m_sun < 1.34 and 1.19 < m_B/m_sun < 1.25, while the scalar-charge to mass ratios satisfy |a_A| < 0.21, |a_B| < 0.21 and |a_B - a_A| < 0.002$. These constraints are independent of the details of the scalar tensor model involved, and of assumptions about the stellar equations of state. Our fits can be used to constrain a broad class of scalar tensor theories by computing the fit quantities as functions of the microscopic parameters in any particular model. For the Brans-Dicke and quasi-Brans-Dicke models, the constraints obtained in this manner are consistent with those quoted in the literature.Comment: 19 pages, 7 figure

    On the absence of bound-state stabilization through short ultra-intense fields

    Get PDF
    We address the question of whether atomic bound states begin to stabilize in the short ultra-intense field limit. We provide a general theory of ionization probability and investigate its gauge invariance. For a wide range of potentials we find an upper and lower bound by non-perturbative methods, which clearly exclude the possibility that the ultra intense field might have a stabilizing effect on the atom. For short pulses we find almost complete ionization as the field strength increases.Comment: 34 pages Late

    New exact solution of Dirac-Coulomb equation with exact boundary condition

    Full text link
    It usually writes the boundary condition of the wave equation in the Coulomb field as a rough form without considering the size of the atomic nucleus. The rough expression brings on that the solutions of the Klein-Gordon equation and the Dirac equation with the Coulomb potential are divergent at the origin of the coordinates, also the virtual energies, when the nuclear charges number Z > 137, meaning the original solutions do not satisfy the conditions for determining solution. Any divergences of the wave functions also imply that the probability density of the meson or the electron would rapidly increase when they are closing to the atomic nucleus. What it predicts is not a truth that the atom in ground state would rapidly collapse to the neutron-like. We consider that the atomic nucleus has definite radius and write the exact boundary condition for the hydrogen and hydrogen-like atom, then newly solve the radial Dirac-Coulomb equation and obtain a new exact solution without any mathematical and physical difficulties. Unexpectedly, the K value constructed by Dirac is naturally written in the barrier width or the equivalent radius of the atomic nucleus in solving the Dirac equation with the exact boundary condition, and it is independent of the quantum energy. Without any divergent wave function and the virtual energies, we obtain a new formula of the energy levels that is different from the Dirac formula of the energy levels in the Coulomb field.Comment: 12 pages,no figure

    The Decay ηc→γγ\eta_c \rightarrow \gamma \gamma : A Test for Potential Models

    Full text link
    We use a simple perturbation theory argument and measurements of charmonium leptonic widths Γ(ψNS→e+e−)\Gamma (\psi_{NS} \rightarrow e^+e^-) to estimate the ratio \mbox{R∘≡∣Ψηc1S(0)∣2/∣Ψψ1S(0)∣2R_\circ \equiv {\vert \Psi _{\eta_{c1S}}(0) \vert}^2 /{\vert\Psi_{\psi_{1 S}}(0)\vert}^2} in the general context of non- relativistic potential models. We obtain R∘=1.4±0.1R_\circ = 1.4 \pm 0.1. We then apply well known potential model formulas, which include lowest order QCD corrections, to find Γ(ηc→γγ)/Γ(ψ1S→e+e−)≈2.2±0.2\Gamma (\eta_c \rightarrow \gamma \gamma )/\Gamma (\psi_{1S} \rightarrow e^+e^-) \approx 2.2\pm 0.2. The central value for Γ(ψ1S→e+e−)\Gamma (\psi_{1S} \rightarrow e^+ e^-)in the 1992 Particle Data Tables then leads to a (non relativistic) prediction Γ(ηc→γγ)≈11.8±0.8\Gamma (\eta_c \rightarrow \gamma \gamma )\approx 11.8\pm 0.8 keV. This prediction is in good agreement with a recent measurement by the ARGUS collaboration, is consistent with a recent measurement by the L3 collaboration but is significantly higher than several earlier measurements and than previous theoretical estimates, which usually assume R∘=1R_\circ =1. The correction to R∘=1R_\circ =1 is estimated to be smaller but nonnegligible for the bbˉb\bar b system. Using the current central measurement for Γ(Υ1S→e+e−)\Gamma (\Upsilon_{1S}\rightarrow e^+e^-) we find Γ(ηb→γγ)≈0.58±0.03\Gamma (\eta_b\rightarrow \gamma \gamma )\approx 0.58\pm 0.03 keV. A rough estimate of relativistic corrections reduces the expected two photon rates to about 8.8 keV and 0.52 keV for the ηc\eta_c and ηb\eta_b mesons respectively. Such correctionsComment: Estimates of likely relativistic corrections to the results have been adde

    Exploring new physics frontiers through numerical relativity

    Get PDF
    The demand to obtain answers to highly complex problems within strong-field gravity has been met with significant progress in the numerical solution of Einstein's equations - along with some spectacular results - in various setups. We review techniques for solving Einstein's equations in generic spacetimes, focusing on fully nonlinear evolutions but also on how to benchmark those results with perturbative approaches. The results address problems in high-energy physics, holography, mathematical physics, fundamental physics, astrophysics and cosmology
    corecore