336 research outputs found

    The air pressure effect on the homogeneous nucleation of carbon dioxide by molecular simulation

    Full text link
    Vapour-liquid equilibria (VLE) and the influence of an inert carrier gas on homogeneous vapour to liquid nucleation are investigated by molecular simulation for quaternary mixtures of carbon dioxide, nitrogen, oxygen, and argon. Canonical ensemble molecular dynamics simulation using the Yasuoka-Matsumoto method is applied to nucleation in supersaturated vapours that contain more carbon dioxide than in the saturated state at the dew line. Established molecular models are employed that are known to accurately reproduce the VLE of the pure fluids as well as their binary and ternary mixtures. On the basis of these models, also the quaternary VLE properties of the bulk fluid are determined with the Grand Equilibrium method. Simulation results for the carrier gas influence on the nucleation rate are compared with the classical nucleation theory (CNT) considering the "pressure effect" [Phys. Rev. Lett. 101: 125703 (2008)]. It is found that the presence of air as a carrier gas decreases the nucleation rate only slightly and, in particular, to a significantly lower extent than predicted by CNT. The nucleation rate of carbon dioxide is generally underestimated by CNT, leading to a deviation between one and two orders of magnitude for pure carbon dioxide in the vicinity of the spinodal line and up to three orders of magnitude in presence of air as a carrier gas. Furthermore, CNT predicts a temperature dependence of the nucleation rate in the spinodal limit, which cannot be confirmed by molecular simulation

    Intertwining operator for AG2AG_2 Calogero-Moser-Sutherland system

    Get PDF
    We consider generalised Calogero-Moser-Sutherland quantum Hamiltonian HH associated with a configuration of vectors AG2AG_2 on the plane which is a union of A2A_2 and G2G_2 root systems. The Hamiltonian HH depends on one parameter. We find an intertwining operator between HH and the Calogero-Moser-Sutherland Hamiltonian for the root system G2G_2. This gives a quantum integral for HH of order 6 in an explicit form thus establishing integrability of HH.Comment: 24 page

    Influence of inherited geometry and fault history on the seismogenic activity and potential of strike-slip fault systems in NW Slovenia: the case study of the Ravne Fault

    Get PDF
    La zona di faglia Ravne è situata in un area di interazione fra due sistemi regionali di faglie con differente cinematica, entrambi collegati alla convergenza fra Adria e Eurasia: le faglie dinariche orientate NW-SE e le faglie del Sud-alpino orientate E-W. L’analisi di dati di geologia strutturale e di due sequenze sismiche recenti che hanno colpito l’area, ci permette di proporre un modello sismotettonico per la faglia di Ravne, che è stata interessata da diverse fasi tettoniche. La geometria originale e la storia evolutiva della zona di faglia svolgono un ruolo cruciale nella distribuzione recente dell’attività sismica e del potenziale sismogenetico dell’intera struttura. Infatti, la configurazione attuale della faglia Ravne, caratterizzata da fagliazione trascorrente su piani ad alto angolo a profondità crostali, è il risultato dell’iniziale geometria di un thrust orientato NW-SE e avente immersione verso NE, e della sua interazione con i piani di thrust diretti essenzialmente E-W. Partendo dai dati raccolti e tenendo in considerazione sia il quadro geodinamico che le relazioni empiriche, proponiamo tre possibili scenari con relativi potenziali sismogenetici per la possibile futura attività della faglia di Ravne

    Grand canonical steady-state simulation of nucleation

    Full text link
    Grand canonical molecular dynamics (GCMD) is applied to the nucleation process in a metastable phase near the spinodal, where nucleation occurs almost instantaneously and is limited to a very short time interval. With a variant of Maxwell's demon, proposed by McDonald [Am. J. Phys. 31: 31 (1963)], all nuclei exceeding a specified size are removed. In such a steady-state simulation, the nucleation process is sampled over an arbitrary timespan and all properties of the metastable state, including the nucleation rate, can be obtained with an increased precision. As an example, a series of GCMD simulations with McDonald's demon is carried out for homogeneous vapor to liquid nucleation of the truncated-shifted Lennard-Jones (tsLJ) fluid, covering the entire relevant temperature range. The results are in agreement with direct non-equilibrium MD simulation in the canonical ensemble. It is confirmed for supersaturated vapors of the tsLJ fluid that the classical nucleation theory underpredicts the nucleation rate by two orders of magnitude

    A classification of smooth embeddings of 3-manifolds in 6-space

    Full text link
    We work in the smooth category. If there are knotted embeddings S^n\to R^m, which often happens for 2m<3n+4, then no concrete complete description of embeddings of n-manifolds into R^m up to isotopy was known, except for disjoint unions of spheres. Let N be a closed connected orientable 3-manifold. Our main result is the following description of the set Emb^6(N) of embeddings N\to R^6 up to isotopy. The Whitney invariant W : Emb^6(N) \to H_1(N;Z) is surjective. For each u \in H_1(N;Z) the Kreck invariant \eta_u : W^{-1}u \to Z_{d(u)} is bijective, where d(u) is the divisibility of the projection of u to the free part of H_1(N;Z). The group Emb^6(S^3) is isomorphic to Z (Haefliger). This group acts on Emb^6(N) by embedded connected sum. It was proved that the orbit space of this action maps under W bijectively to H_1(N;Z) (by Vrabec and Haefliger's smoothing theory). The new part of our classification result is determination of the orbits of the action. E. g. for N=RP^3 the action is free, while for N=S^1\times S^2 we construct explicitly an embedding f : N \to R^6 such that for each knot l:S^3\to R^6 the embedding f#l is isotopic to f. Our proof uses new approaches involving the Kreck modified surgery theory or the Boechat-Haefliger formula for smoothing obstruction.Comment: 32 pages, a link to http://www.springerlink.com added, to appear in Math. Zei

    Phase diversity restoration of sunspot images I. Relations between penumbral and photospheric features

    Full text link
    We investigate the dynamics of and the relations between small-scale penumbral and photospheric features near the outer penumbral boundary: penumbral grains (PGs), dark penumbral fibrils, granules, and photospheric G-band bright points. The analysis is based on a 2 h time sequence of a sunspot close to disc center, taken simultaneously in the G-band and in the blue continuum at 450.7 nm. Observations were performed at the Swedish Vacuum Solar Telescope (La Palma) in July 1999. A total of 2564 images (46 arcsec x 75 arcsec) were corrected for telescope aberrations and turbulence perturbations by applying the inversion method of phase diversity. Our findings can by summarized as follows: (a) One third of the outward-moving PGs pass through the outer penumbral boundary and then either continue moving as small bright features or expand and develop into granules. (b) Former PGs and G-band bright points next to the spot reveal a different nature. The latter have not been identified as a continuation of PGs escaping from the penumbra. The G-band bright points are mostly born close to dark penumbral fibrils where the magnetic field is strong, whereas PGs stem from the less-magnetized penumbral component and evolve presumably to non-magnetic granules or small bright features.Comment: Accepted by A&A, 9 pages and 5 figure
    corecore