11 research outputs found

    An iconic language for the graphical representation of medical concepts

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Many medication errors are encountered in drug prescriptions, which would not occur if practitioners could remember the drug properties. They can refer to drug monographs to find these properties, however drug monographs are long and tedious to read during consultation. We propose a two-step approach for facilitating access to drug monographs. The first step, presented here, is the design of a graphical language, called VCM.</p> <p>Methods</p> <p>The VCM graphical language was designed using a small number of graphical primitives and combinatory rules. VCM was evaluated over 11 volunteer general practitioners to assess if the language is easy to learn, to understand and to use. Evaluators were asked to register their VCM training time, to indicate the meaning of VCM icons and sentences, and to answer clinical questions related to randomly generated drug monograph-like documents, supplied in text or VCM format.</p> <p>Results</p> <p>VCM can represent the various signs, diseases, physiological states, life habits, drugs and tests described in drug monographs. Grammatical rules make it possible to generate many icons by combining a small number of primitives and reusing simple icons to build more complex ones. Icons can be organized into simple sentences to express drug recommendations. Evaluation showed that VCM was learnt in 2 to 7 hours, that physicians understood 89% of the tested VCM icons, and that they answered correctly to 94% of questions using VCM (versus 88% using text, <it>p </it>= 0.003) and 1.8 times faster (<it>p </it>< 0.001).</p> <p>Conclusion</p> <p>VCM can be learnt in a few hours and appears to be easy to read. It can now be used in a second step: the design of graphical interfaces facilitating access to drug monographs. It could also be used for broader applications, including the design of interfaces for consulting other types of medical document or medical data, or, very simply, to enrich medical texts.</p

    Effect of computerisation on the quality and safety of chemotherapy prescription

    No full text
    BACKGROUND: Chemotherapy is prescribed according to protocols of several cycles. These protocols include not only therapeutic agents but also adjuvant solvents and inherent supportive care measures. Multiple errors can occur during the prescription, the transmission of documents and the drug delivery processes, and lead to potentially serious consequences. OBJECTIVE: To assess the effect of a computerised physician order entry (CPOE) system on the number of errors in prescription recorded by the centralised chemotherapy unit of a pharmacy service in a university hospital. PATIENTS AND METHODS: Existing chemotherapy protocols were standardised by a multidisciplinary team (composed of a doctor, a pharmacist and a nurse) and a CPOE system was developed from a File Maker Pro database. Chemotherapy protocols were progressively introduced into the CPOE system. The effect of the system on prescribing errors was measured over 15 months before and 21 months after starting computerised protocol prescription. Errors were classified as major (dosage and drug name) and minor (volume or type of infusion solution). RESULTS: Before computerisation, 141 errors were recorded for 940 prescribed chemotherapy regimens (15%). After introduction of the CPOE system, 75 errors were recorded for 1505 prescribed chemotherapy regimens (5%). Of these errors, 69 (92%) were recorded in prescriptions that did not use a computerised protocol. A dramatic decrease in the number of errors was noticeable when 50% of the chemotherapy protocols were prescribed through the CPOE system. CONCLUSION: Errors in chemotherapy prescription nearly disappeared after implementation of CPOE. The safety of chemotherapy prescription was markedly improved

    Traitements des facteurs de risque cardiovasculaire et dépistage de la maladie coronarienne dans le diabète de type 2 [Treatments for cardiovascular risk factors and screening for coronary artery disease in type 2 diabetes mellitus]

    No full text
    The recent ACCORD and DIAD studies revealed results which could modify treatments and the screening of diabetes vascular complications. Indeed, ACCORD shows no benefit on the prevention of diabetes vascular complications by aggressive treatment of hypertension or the combined treatment of the dyslipidemia. The intensive treatment of the blood glucose, if associated with severe hypoglycemias, increases mortality. DIAD revealed 20% of silent myocardial ischaemia in diabetic patients but no beneficial effect on the cardiovascular mortality. A careful reading of these studies in the light of long term studies such as UKPDS and STENO reveals that these negative results are generated by a too short follow-up and too aggressive objectives. The long term studies reveal that more realistic objectives remain beneficial

    Impact of a computerized physician order entry system on compliance with prescription accuracy requirements.

    No full text
    OBJECTIVE: To assess the change in non-compliant items in prescription orders following the implementation of a computerized physician order entry (CPOE) system named PreDiMed. SETTING: The department of internal medicine (39 and 38 beds) in two regional hospitals in Canton Vaud, Switzerland. METHOD: The prescription lines in 100 pre- and 100 post-implementation patients' files were classified according to three modes of administration (medicines for oral or other non-parenteral uses; medicines administered parenterally or via nasogastric tube; pro re nata (PRN), as needed) and analyzed for a number of relevant variables constitutive of medical prescriptions. MAIN OUTCOME MEASURE: The monitored variables depended on the pharmaceutical category and included mainly name of medicine, pharmaceutical form, posology and route of administration, diluting solution, flow rate and identification of prescriber. RESULTS: In 2,099 prescription lines, the total number of non-compliant items was 2,265 before CPOE implementation, or 1.079 non-compliant items per line. Two-thirds of these were due to missing information, and the remaining third to incomplete information. In 2,074 prescription lines post-CPOE implementation, the number of non-compliant items had decreased to 221, or 0.107 non-compliant item per line, a dramatic 10-fold decrease (chi(2) = 4615; P &lt; 10(-6)). Limitations of the computerized system were the risk for erroneous items in some non-prefilled fields and ambiguity due to a field with doses shown on commercial products. CONCLUSION: The deployment of PreDiMed in two departments of internal medicine has led to a major improvement in formal aspects of physicians' prescriptions. Some limitations of the first version of PreDiMed were unveiled and are being corrected

    Does Computerized Provider Order Entry Reduce Prescribing Errors for Hospital Inpatients? A Systematic Review

    No full text
    Previous reviews have examined evidence of the impact of CPOE on medication errors, but have used highly variable definitions of “error”. We attempted to answer a very focused question, namely, what evidence exists that CPOE systems reduce prescribing errors among hospital inpatients? We identified 13 papers (reporting 12 studies) published between 1998 and 2007. Nine demonstrated a significant reduction in prescribing error rates for all or some drug types. Few studies examined changes in error severity, but minor errors were most often reported as decreasing. Several studies reported increases in the rate of duplicate orders and failures to discontinue drugs, often attributed to inappropriate selection from a dropdown menu or to an inability to view all active medication orders concurrently. The evidence-base reporting the effectiveness of CPOE to reduce prescribing errors is not compelling and is limited by modest study sample sizes and designs. Future studies should include larger samples including multiple sites, controlled study designs, and standardized error and severity reporting. The role of decision support in minimizing severe prescribing error rates also requires investigation
    corecore