8 research outputs found

    Thermal and electrical contact conductance studies

    Get PDF
    Prediction of electrical and thermal contact resistance for pressed, nominally flat contacts is complicated by the large number of variables which influence contact formation. This is reflected in experimental results as a wide variation in contact resistances, spanning up to six orders of magnitude. A series of experiments were performed to observe the effects of oxidation and surface roughness on contact resistance. Electrical contact resistance and thermal contact conductance from 4 to 290 K on OFHC Cu contacts are reported. Electrical contact resistance was measured with a 4-wire DC technique. Thermal contact conductance was determined by steady-state longitudinal heat flow. Corrections for the bulk contribution ot the overall measured resistance were made, with the remaining resistance due solely to the presence of the contact

    Design of a Superconducting Magnetic Suspension System for a Liquid Helium Flow Experiment

    Get PDF
    We discuss a preliminary design for a superconducting magnetic suspension system for measurement of drag on rotationally symmetric bodies in liquid helium. Superconducting materials are a natural choice for liquid helium studies, since temperatures are well below most critical temperatures, so that the resulting heat load is negligible. Also, due to its diamagnetic properties, a superconducting model (for example made or coated with Nb) is inherently stable against disturbances. Issues which we consider include model placement during initial cool-down, maintaining placement during anticipated drag and lift forces, and force measurement. This later can be achieved by a passive technique, where the body is allowed to deflect under the influence of drag from its neutral position. The resulting shift in flux is detected via a superconducting pickup coil. The pickup coil may be connected either to a SQUID, or a secondary loop wound around a Hall probe. Both options are discussed. The objective of this work is to gain a better understanding of the nature of turbulent fields in normal and superfluid helium for potential application to problems in classical high Reynolds number turbulence

    Airflow Dynamics of Coughing in Healthy Human Volunteers by Shadowgraph Imaging: An Aid to Aerosol Infection Control

    Get PDF
    Cough airflow dynamics have been previously studied using a variety of experimental methods. In this study, real-time, non-invasive shadowgraph imaging was applied to obtain additional analyses of cough airflows produced by healthy volunteers. Twenty healthy volunteers (10 women, mean age 32.2±12.9 years; 10 men, mean age 25.3±2.5 years) were asked to cough freely, then into their sleeves (as per current US CDC recommendations) in this study to analyze cough airflow dynamics. For the 10 females (cases 1–10), their maximum detectable cough propagation distances ranged from 0.16–0.55 m, with maximum derived velocities of 2.2–5.0 m/s, and their maximum detectable 2-D projected areas ranged from 0.010–0.11 m2, with maximum derived expansion rates of 0.15–0.55 m2/s. For the 10 males (cases 11–20), their maximum detectable cough propagation distances ranged from 0.31–0.64 m, with maximum derived velocities of 3.2–14 m/s, and their maximum detectable 2-D projected areas ranged from 0.04–0.14 m2, with maximum derived expansion rates of 0.25–1.4 m2/s
    corecore