44 research outputs found

    Groundwater augmentation through the site selection of floodwater spreading using a data mining approach (case study: Mashhad Plain, Iran)

    Full text link
    © 2018 by the authors. It is a well-known fact that sustainable development goals are difficult to achieve without a proper water resources management strategy. This study tries to implement some state-of-the-art statistical and data mining models i.e., weights-of-evidence (WoE), boosted regression trees (BRT), and classification and regression tree (CART) to identify suitable areas for artificial recharge through floodwater spreading (FWS). At first, suitable areas for the FWS project were identified in a basin in north-eastern Iran based on the national guidelines and a literature survey. Using the same methodology, an identical number of FWS unsuitable areas were also determined. Afterward, a set of different FWS conditioning factors were selected for modeling FWS suitability. The models were applied using 70% of the suitable and unsuitable locations and validated with the rest of the input data (i.e., 30%). Finally, a receiver operating characteristics (ROC) curve was plotted to compare the produced FWS suitability maps. The findings depicted acceptable performance of the BRT, CART, and WoE for FWS suitability mapping with an area under the ROC curves of 92, 87.5, and 81.6%, respectively. Among the considered variables, transmissivity, distance from rivers, aquifer thickness, and electrical conductivity were determined as the most important contributors in the modeling. FWS suitability maps produced by the proposed method in this study could be used as a guideline for water resource managers to control flood damage and obtain new sources of groundwater. This methodology could be easily replicated to produce FWS suitability maps in other regions with similar hydrogeological conditions

    Flood susceptibility assessment using extreme gradient boosting (EGB), Iran

    Full text link
    Flood occurs as a result of high intensity and long-term rainfalls accompanied by snowmelt which flow out of the main river channel onto the flood prone areas and damage the buildings, roads, and facilities and cause life losses. This study aims to implement extreme gradient boosting (EGB) method for the first time in flood susceptibility modelling and compare its performance with three advanced benchmark models including Frequency Ratio (FR), Random Forest (RF), and Generalized Additive Model (GAM). Flood susceptibility map is an efficient tool to make decision for flood control. To do this, the altitude, slope degree, profile curvature, topographic wetness index (TWI), distance from rivers, normalized difference vegetation index, plan curvature, rainfall, land use, stream power index, and lithology were fed to the models. To run the models, 243 flood locations were detected by field surveys and national reports. The same number of locations were randomly created in the study regions and considered as non-flood locations. The flood and non-flood locations were split in 70% ratio for the training dataset and 30% ratio for the testing dataset. Both flood and non-flood locations were fed into the models and output flood susceptibility maps were produced. In order to evaluate the performance of the algorithms, receiver operating characteristics (ROC) curve was implemented. The results of the current research show that the RF model and EGB have the best performances with the area under ROC curve (AUC) of 0.985, and 0.980, followed by the GAM and FR algorithms with AUC values of 0.97, and 0.953, respectively. The results of variable importance by the RF model show that distance from rivers has an important influence on flood susceptibility mapping (FSM), followed by profile curvature, slope, TWI, and altitude. Considering the high performances of the RF and EGB models in flood susceptibility modelling, application of these models is recommended for such studies

    Artificial intelligence-based regional flood frequency analysis methods : a scoping review

    Get PDF
    Flood is one of the most destructive natural disasters, causing significant economic damage and loss of lives. Numerous methods have been introduced to estimate design floods, which include linear and non-linear techniques. Since flood generation is a non-linear process, the use of linear techniques has inherent weaknesses. To overcome these, artificial intelligence (AI)-based non-linear regional flood frequency analysis (RFFA) techniques have been introduced over the last two decades. There are limited articles available in the literature discussing the relative merits/demerits of these AI-based RFFA techniques. To fill this knowledge gap, a scoping review on the AI-based RFFA techniques is presented. Based on the Scopus database, more than 1000 articles were initially selected, which were then screened manually to select the most relevant articles. The accuracy and efficiency of the selected RFFA techniques based on a set of evaluation statistics were compared. Furthermore, the relationships among countries and researchers focusing on AI-based RFFA techniques are illustrated. In terms of performance, artificial neural networks (ANN) are found to be the best performing techniques among all the selected AI-based RFFA techniques. It is also found that Australia, Canada, and Iran have published the highest number of articles in this research field, followed by Turkey, the United Arab Emirates (UAE), India, and China. Future research should be directed towards identification of the impacts of data quantity and quality, model uncertainty and climate change on the AI-based RFFA techniques

    Landslide susceptibility mapping at VAZ watershed (Iran) using an artificial neural network model: a comparison between multilayer perceptron (MLP) and radial basic function (RBF) algorithms

    Get PDF
    Landslide susceptibility and hazard assessments are the most important steps in landslide risk mapping. The main objective of this study was to investigate and compare the results of two artificial neural network (ANN) algorithms, i.e., multilayer perceptron (MLP) and radial basic function (RBF) for spatial prediction of landslide susceptibility in Vaz Watershed, Iran. At first, landslide locations were identified by aerial photographs and field surveys, and a total of 136 landside locations were constructed from various sources. Then the landslide inventory map was randomly split into a training dataset 70 % (95 landslide locations) for training the ANN model and the remaining 30 % (41 landslides locations) was used for validation purpose. Nine landslide conditioning factors such as slope, slope aspect, altitude, land use, lithology, distance from rivers, distance from roads, distance from faults, and rainfall were constructed in geographical information system. In this study, both MLP and RBF algorithms were used in artificial neural network model. The results showed that MLP with Broyden–Fletcher–Goldfarb–Shanno learning algorithm is more efficient than RBF in landslide susceptibility mapping for the study area. Finally the landslide susceptibility maps were validated using the validation data (i.e., 30 % landslide location data that was not used during the model construction) using area under the curve (AUC) method. The success rate curve showed that the area under the curve for RBF and MLP was 0.9085 (90.85 %) and 0.9193 (91.93 %) accuracy, respectively. Similarly, the validation result showed that the area under the curve for MLP and RBF models were 0.881 (88.1 %) and 0.8724 (87.24 %), respectively. The results of this study showed that landslide susceptibility mapping in the Vaz Watershed of Iran using the ANN approach is viable and can be used for land use planning

    Development and analysis of the Soil Water Infiltration Global database.

    Get PDF
    In this paper, we present and analyze a novel global database of soil infiltration measurements, the Soil Water Infiltration Global (SWIG) database. In total, 5023 infiltration curves were collected across all continents in the SWIG database. These data were either provided and quality checked by the scientists who performed the experiments or they were digitized from published articles. Data from 54 different countries were included in the database with major contributions from Iran, China, and the USA. In addition to its extensive geographical coverage, the collected infiltration curves cover research from 1976 to late 2017. Basic information on measurement location and method, soil properties, and land use was gathered along with the infiltration data, making the database valuable for the development of pedotransfer functions (PTFs) for estimating soil hydraulic properties, for the evaluation of infiltration measurement methods, and for developing and validating infiltration models. Soil textural information (clay, silt, and sand content) is available for 3842 out of 5023 infiltration measurements (~76%) covering nearly all soil USDA textural classes except for the sandy clay and silt classes. Information on land use is available for 76% of the experimental sites with agricultural land use as the dominant type (~40%). We are convinced that the SWIG database will allow for a better parameterization of the infiltration process in land surface models and for testing infiltration models. All collected data and related soil characteristics are provided online in *.xlsx and *.csv formats for reference, and we add a disclaimer that the database is for public domain use only and can be copied freely by referencing it. Supplementary data are available at https://doi.org/10.1594/PANGAEA.885492 (Rahmati et al., 2018). Data quality assessment is strongly advised prior to any use of this database. Finally, we would like to encourage scientists to extend and update the SWIG database by uploading new data to it

    Lipid quality in benni (Barbus sharpeyi) fillets during ice storage

    No full text
    Abstract This research was conducted to evaluate qualitative changes of Benni Fish (Barbus Sharpeyi) during its maintenance in ice storage for 20 days. To do so, chemical spoilage indicators including peroxide (PV), thiobarbituric acid (TBA), free fatty acids(FFA), total lipid (TL), moisture (M), heme iron (HI), and also organoleptic parameters (tissue, gill appearance, gill smell, general appearance, and eyes) were measured. Fat quality of sample fish (in terms of oxidative and hydrolytic rancidity) showed a significant reduction during the maintenance period (p<0.05). Peroxide index changes from 3.73 to 7.52 (meq/kg) and TBA from 0.5 to 6.6 (mg MDA/kg) was recorded as markers of oxidative spoilage and FFA changes from 2.05 to 6.58 (expressed as % of oleic acid) were recorded as indicator of hydrolytic rancidity. Each one of sensory tests were rated as excellent to good until the fourth day and their quality was acceptable until the tenth day and then organoleptic results dropped significantly. In general, the best time of fish Shelf life in ice storage was determined to be 7 to 10 days

    flood hazard susceptibility modeling in te Kan Watershed

    No full text
    Dataset for modeling flood hazard in the Kan watershed, Ira

    Flood Risk Assessment using Multi-Criteria Decision-Making Models (MCDM) and Data Mining Methods (Case Study: Shiraz District 4)

    No full text
    Population growth, urbanization, and land use change have increased disastrous floods. Iran is also among the countries at high risk of floods. The latest examples of flood damage are the devastating floods of the spring of 2019 with significant mortality and financial losses in more than ten provinces of the country. The purpose of this study is to prepare an urban flood risk map of District 4 City Shiraz. The vulnerability of the region was made using PROMETHEE Ⅱ and COPRAS multi-criteria decision-making models and urban flood hazard zones were prepared by partial least squares regression (PLSR) and ridge regression (RR) models and a risk map was obtained by multiplying the vulnerability and hazard in ArcGIS software. The highest percentage of the study area in the PROMETHEE Ⅱ and COPRAS models belongs to the moderate class of vulnerability. The evaluation of the vulnerability models using Boolean logic and RMSE and MAPE statistics, showed that the COPRAS model provided better results than the PROMETHEE model. The results of partial least square regression (PLSR) and ridge regression (RR) models in flood risk modeling were analyzed by the Taylor diagram, which showed the superiority of the ridge regression (RR) model and the accuracy of this model in preparing urban flood hazard maps. The risk map of the study area indicated that 34% of the area (973 ha) is in the range of high and very high flood risk
    corecore