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Abstract: Flood is one of the most destructive natural disasters, causing significant economic damage
and loss of lives. Numerous methods have been introduced to estimate design floods, which include
linear and non-linear techniques. Since flood generation is a non-linear process, the use of linear
techniques has inherent weaknesses. To overcome these, artificial intelligence (AI)-based non-linear
regional flood frequency analysis (RFFA) techniques have been introduced over the last two decades.
There are limited articles available in the literature discussing the relative merits/demerits of these
AI-based RFFA techniques. To fill this knowledge gap, a scoping review on the AI-based RFFA
techniques is presented. Based on the Scopus database, more than 1000 articles were initially selected,
which were then screened manually to select the most relevant articles. The accuracy and efficiency of
the selected RFFA techniques based on a set of evaluation statistics were compared. Furthermore, the
relationships among countries and researchers focusing on AI-based RFFA techniques are illustrated.
In terms of performance, artificial neural networks (ANN) are found to be the best performing
techniques among all the selected AI-based RFFA techniques. It is also found that Australia, Canada,
and Iran have published the highest number of articles in this research field, followed by Turkey,
the United Arab Emirates (UAE), India, and China. Future research should be directed towards
identification of the impacts of data quantity and quality, model uncertainty and climate change on
the AI-based RFFA techniques.

Keywords: regional flood frequency analysis; artificial neural networks; flood; artificial intelligence

1. Introduction

Flood is one of most devastating natural disasters, resulting in significant economic
losses including human deaths [1,2]. This damages both rural and urban infrastructure
like bridge and drainage systems [3,4]. Flood generally leaves undesirable sediments
and debris in the affected lands [5,6], which can disrupt transportation networks [7], clog
drainage infrastructure and sewers [8,9] and may make lands unproductive. The cleaning
up of flood debris is usually costly, not to mention the disruption to the daily lives of
the community involved [10,11]. Due to climate change, the frequency and magnitude of
floods are increasing [12].

Flood forecasting requires significant efforts, and it is usually the responsibility of
a large government organisation. Governments spend a significant amount on various
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projects to identify flood-safe areas, which are used to build cities. Researchers have
developed numerous methods to estimate design floods, which are used to build flood-safe
infrastructure [13,14]. Design flood is defined as a flood level or discharge associated with
a return period or annual exceedance probability such as a 100-year flood.

In addition to traditional techniques, like the rational method, physical and numeri-
cal [15,16] models have been proposed for design flood estimation. Most of the physical
models require in-depth knowledge of flood processes [17,18], making them difficult to
use in practice. Van den Honert and McAneney [19] pointed out the common limitations
associated with these physical models [20,21], which include model inaccuracies resulting
in systematic errors (over or underestimation of design floods) [22,23]. On the other hand,
data-driven models have been quite popular for flood estimation in recent years [24]. Ex-
amples include a quantile regression technique and a probabilistic rational method [25].
This is because they usually consider climate factors and catchment characteristics in devel-
oping models, which are easier to apply [26,27]. A flood frequency analysis (FFA) is the
most popular method to estimate design floods, which uses observed peak discharge data
disregarding catchment characteristics [28,29]. A normal distribution [30,31], log-normal
distribution [32,33], Gumbel distribution [34,35], generalised extreme value distribution
and log-Pearson type III distribution [36,37] are some of the most commonly used flood
frequency distributions in FFA. One of the major limitations of FFA is the lack of long
and good quality recorded flood data at the location of interest. To overcome data lim-
itations, hydrologists have proposed a regional flood frequency analysis (RFFA), which
attempts to estimate design floods at an ungauged catchment based on the concept of a
homogeneous region, which pools observed flood data from a group of similar catchments
to estimate design floods at the ungauged catchment [38,39]. This method became more
popular among researchers than physical models because it saves time and resources [40].
Probabilistic rational method (PRM) [41], multiple linear regression (MLR) [42,43], quan-
tile regression techniques (QRT) [44,45], and index flood method (IFM) [46,47] are some
of the most commonly used RFFA techniques. However, some of the early RFFA tech-
niques (e.g., rational method) have lost their popularity due to their inconsistency and
inappropriate model assumptions.

In the past two decades, scientists suggested hybrid or mixed methods to increase
the relative accuracy of RFFA models [48,49]. Although some early linear models have
been improved, they may not be accurate under some circumstances as flood generation is
basically a non-linear process [50]. Hydrologists attempted to apply non-linear methods in
RFFA such as a non-linear regression analysis (where log-transformation of the variables
is considered). Artificial intelligence (AI)-based methods are also non-linear, but more
powerful than simple non-linear models like log-log ones as they can consider many
different combinations of variables and complex non-linear processes in model building.
Given that the majority of flood estimation methods are data driven, they require a great
deal of simplification and assumptions to be practical, accessible, and implementable [51,52].
They require relatively fewer input data and minimal knowledge of fundamental physical
processes involved. Over the last two decades, non-linear AI-based RFFA methods have
grown in popularity over physical models as these provide more accurate results and are
easier to apply [53,54]. Artificial neural networks (ANNs) [55,56], support vector regression
(SVR) [57–60], adaptive neuro-fuzzy inference system (ANFIS) [61,62], genetic algorithms
(GA) [63,64] and hybrid, mixed and combined approaches [65,66] are some of the most
popular AI-based flood estimation methods. As AI-based models are relatively new in flood
estimation, it is not easy to decide which one is to be applied for a given problem [67,68].

There are several important aspects to consider when building models based on AI.
Firstly, these models like all other data-driven models need enough data to develop and test
the model [67]. If adequate data exist, it is often possible to build, test, and evaluate an AI-
based model (similar to many other RFFA models) by dividing the data into training, test,
and evaluation data sub-sets [69,70]. Cross-validation is also often used in building RFFA
models when less data samples are available [71]. The more data used in the modeling,



Water 2022, 14, 2677 3 of 22

the less generalization error occurs, meaning that the final model can be used on different
sites with limited or no data available. Other benefits of having adequate data include the
simplicity of using different distribution methods, the ability to account for lost data or
missing variables, and, most crucially, the ability to train and validate the model multiple
times to develop the best possible model [72,73]. However, it should be noted that data
quality is of significant importance in developing and testing accurate models.

A scoping review aims to identify gaps in the current research on a selected field and
highlight areas requiring further research. This is different to a systematic review, which
aims to identify, appraise, and synthesize all available research studies that are relevant
to a given question in review. In this study, a scoping review is assumed to be adequate
as this is dedicated to find gaps in the current AI-based RFFA studies and point out areas
that need further investigation. Although there have been few previous reviews on flood
frequency analysis [74–77], there has been no review paper on AI-based RFFA. Hence, this
paper will fill this knowledge gap and will serve as a basis for conducting future research
on AI-based RFFA techniques.

2. Methodology of the Scoping Review

The standard methodology of a scoping review was followed to carry out this re-
view, which consisted of (a) the formulation of research questions; (b) determining a list
of relevant keywords; (c) the selection of relevant databases; (d) the selection of inclu-
sion/exclusion criteria; (e) the selection of criteria for article selection; and (f) the selection
of criteria to evaluate the finally extracted literature. The following research questions
were formulated: (a) Why are AI-based methods needed in RFFA? (b) Do AI-based RFFA
methods provide more accurate flood quantile estimates? (c) What levels of uncertainties
are associated with the AI-based RFFA methods? (d) Who are the most active researchers
in this field and how to map their collaborations? The following keywords were selected:
flood, floods, flood frequency, regional flood frequency, artificial intelligence, ANN, ANFIS,
SVM, GA, estimation, frequency, prediction, and analysis. Scopus and Google Scholar
were selected as preferred database since it was believed that these would capture all the
relevant articles on AI-based RFFA.

Journal rankings, citations, authorship, and comparative studies were the primary
criteria for selecting relevant articles. Initially, 1033 articles were identified, however, after
screening, only 30 articles were found to be on the AI-based RFFA. These articles were
thoroughly examined, particularly those that use statistical criteria to compare various
AI-based RFFA methods. Figure 1 illustrates the method of article selection in this study.

It should be noted that the relative accuracy of an RFFA study/method cannot be
compared with another study/method directly using the reported error statistics, since in
most cases they use different dataset to develop and test the methods. For example, an
approach trained using quality data from real world floods reporting 80% accuracy is far
better in practice in comparison to another approach trained over very few samples of lab
simulated data reporting 99% accuracy. Hence, the comparison of AI-based RFFA methods
made in the following section is taken to be as a guide only. In real-world applications,
several methods should be applied and compared to select a preferred method for design
flood estimation. One method found to be better in one geographic region does not
guarantee its superiority at another location.
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Figure 1. Article selection method in this study. Figure 1. Article selection method in this study.
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3. AI-Based RFFA Methods

Figure 2 illustrates how to develop an AI-based RFFA model. It is important to
identify input variables. Some of the most used input variables include catchment area (A),
longitude (LON), latitude (LAT), elevation (EV), drainage density (DD), average annual
maximum daily precipitation (AP), rainfall intensity (I), vegetation coverage (VC), slope
(SL), and relative elevation (RE), fraction forested area (F), mean annual evapotranspiration
(MAE), shape factor (SF), and stream density (SDEN). Output variables include maximum
stream flow, flood quantiles, and time to peak. Collected data are then standardised to
avoid a scaling problem. To build a reliable model, training, validation [69,70], and test
data are required. Different statistical measures are used to compare alternative models
such as RMSE, RMSNE, and R2.
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3.1. ANN-Based RFFA Models

The ANN performs like a human nervous system in that it learns from previous
trials and decides how to come up with a better model by exploiting the best possible
links between dependent (flood quantiles such as Q10) and independent variables (such
as rainfall) in a series of steps. ANN, as a data-driven tool, does not require any physical
knowledge of flood processes involved [78,79]. One of the limitations of this method is lack
of physical interpretation of the developed models.

Shu and Burn [51] compared the ANN with a parametric regression analysis in one of
the first articles on the AI-based RFFA. They found that a properly developed ANN model
outperforms both linear (REG-OLS) and non-linear (REG-NONLINEAR) regression-based
methods. They also compared the results of a single ANN to those of ANN ensembles,
concluding that the latter provided more accurate flood estimates. Jingyi and Hall [80]
compared four different models, including the residuals method, Ward’s method, fuzzy
c-mean, and a variation of the ANN, known as the Kohonen network. They found that,
while other methods may be somewhat useful, the ANN method produced the lowest
standard error of estimate and could be a useful method if adequate data from enough sites
are available.

Dawson et al. [81] applied ANN using data from 850 stations. They compared the
results of the ANN method to those of multiple regression models and found that ANN
outperformed the other models. They noted that because there is little need to under-
stand the physics of flood generation processes, scientists from all disciplines, not just
hydrologists, could use the ANN method. Shu and Ouarda [56] developed RFFA models
based on ANN and CCA using data from 151 catchments and found that the ANN–CCA
combination provided better generalisation and accuracy. Srinivas et al. [49] used AI-based
RFFA and regression methods involving various AI-based algorithms. To determine the
best approach for data clustering, a regression analysis, CCA, and FCM algorithms were
compared. They found that leave-one-out cross-validation based on the FCM algorithm
produced better results when evaluating the accuracy of the estimated flood quantities.

Ouarda and Shu [82] estimated regional low flows at ungauged sites using a single
ANN, an ANN ensemble, and a multiple regression analysis. When they compared single
and ANN ensemble methods to the traditional regression analysis, they found that the
AI-based methods are more accurate. Furthermore, the ANN ensemble outperformed the
single ANN in terms of the generalisation of results.

Singh et al. [83] developed two types of AI-based RFFA methods (BNN and M5) using
data from 93 catchments in India. They observed that the M5 method performed better than
the BNN. They also mentioned that the M5 method has some advantages over the BNN,
such as providing more information on the generated model and being highly efficient
in training. Seckin et al. [84] compared the performance of various linear, non-linear, and
AI-based RFFA methods, including MLP, RBNN, GRNN, MLR, and MNLR, using data
from 13 basins. They observed that MLP outperformed other models by having the lowest
RMSE for test data and the best accuracy, as well as requiring less computational effort and
fewer input data to run the model.

Aziz et al. [85] also applied the ANN in RFFA in Australia and found that the ANN
method worked well with only two predictor variables. This performed better when all the
data from seven different regions were combined to form one region rather than studying
them separately. This study shows better performance when using relatively large datasets
in ANN. To estimate flood quantiles in ungauged catchments, Alobaidi et al. [86] proposed
a new ensemble architecture based on the ANN by using data from 151 hydrometric
stations in Canada. They observed that the proposed ANN-ensemble methods (G-EANN
and EANN) outperformed the previous case study by Shu and Ouarda [56]. Based on
evaluation statistics, the proposed G-EANN was determined to be the best method.

Durocher et al. [87] proposed PPR, a new method that combines ANN and the gen-
eralised additive model (GAM). They compared the results with eight different methods
proposed by other researchers, including traditional [88,89], GAM [90], spatial [88,91], and
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ANN [56]. Using at least 15 years of recorded data collected from 151 hydrometric stations
in Canada, they reported that, despite having a simpler structure than ANN, the PPR
method produced comparable results. While benefiting from the advantages of ANN and
GAM, the simplicity of GAM and the ability of ANN to consider relationships between
different characteristics help to overcome disadvantages associated with both models in
terms of parsimony and interpretability.

Ouali et al. [92] used over 15 years of data collected from three different regions for a to-
tal of 424 catchments located in Canada and the United States to find the best possible RFFA
method. They compared the performance of various ANN-based linear and non-linear
method combinations with hybrid linear, non-linear, and semi-linear methods. In compar-
ison to other studies, such as Ouarda et al. [93], Chebana et al. [90], and Ouali et al. [94],
they found that non-linear methods were the most efficient, and while linear methods
were the least accurate, semi-linear methods performed slightly better than linear methods.
Kordrostami et al. [95] evaluated the performance of five different types of ANN methods
in RFFA in Australia using data from 88 gauging stations spanning 25–82 years. They
observed that ANN techniques with fewer predictor variables performed better than those
with more, unless all the eight variables were utilized.

Linh et al. [96] evaluated the performance of WNN models as a hybrid of ANN in
design flood estimation using 37 years of data from three hydrometric stations. They used
RMSE, R2, and NASH to determine the best method among the MLR, ANN, and WNN, and
found that the latter (hybrid) performed significantly better than the single ANN. They also
reported that WNN performed better in terms of the generalisation of results. Desai and
Ouarda [97] developed various AI-based RRFA methods using data from 151 catchments
in Canada, including different combinations of CCA with RFR, ANN, ANN ensemble, and
MLR methods. The CCA technique, in general, increased the efficiency of selected methods
by delineating homogeneous regions of stations. Based on statistical indices such as NASH,
RMSE, and RRMSE, they found that CCA-PFR was the best method with less complexity,
greater reliability, and accuracy when compared to other single or ensemble ANN-based
RFFA methods.

Aziz et al. [67] used ANN, GEP, and OLS-based QRT methods to estimate flood
quantiles using a recorded dataset spanning 25 to 75 years from 452 Australian catchments.
They used statistical indicators such as median RE to evaluate the performance of the
selected methods and found ANN and GEP to be more accurate than the QRT, particularly
ANN for smaller ARIs.

It can be seen from the above discussion that ANN has been widely used in RFFA.
The relative accuracy of the developed ANN-based RFFA methods has been found to vary
from study to study as this largely depends on the data length and accuracy.

3.2. ANFIS-Based RFFA Models

Several hydrologists have used ANFIS to estimate design floods. This model clusters
data in linguistic terms using fuzzy systems [98], which is useful in the absence of a
comprehensive set of data [99,100]. Fuzzification, Rule, Normalization, Defuzzification,
and Summation are the five layers of this method. To build a network between different
nodes and a set of parameters, ANFIS employs the Takagi and Sugeno methods, which
employ if-then fuzzy rules to modify certain parameters to reduce overall prediction
error [101]. This method gradually trains data based on its learning capabilities. Some
of the common types of ANFIS used in the literature [102] are grid partitioning (GP),
subtractive clustering (SC), and fuzzy c-mean (FCM) clustering.

Shu and Ouarda [55] estimated design floods at ungauged sites using the ANFIS
method. They compared this method to other non-linear ones such as ANN and found that
ANFIS performed better in terms of accuracy and learning capability than other models.
Aziz et al. [103] used a CANFIS-based RFFA method using data from 452 catchments in
Australia. They noted that these methods work very well for regional flood quantile esti-
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mates with reasonable accuracy. They did note, however, that the QRT method developed
by Haddad and Rahman [104] performed better than the AI-based methods.

Bozchaloei and Vafakhah [105] assessed the performance of ANFIS, ANN, and NLR
at their site of interest using 20 years of data from 33 hydrometric stations in Iran. They
found that the ANFIS method performed better than the other two methods, yielding more
robust and accurate results with the lowest RMSE and highest NASH coefficients.

Kumar et al. [61] used a dataset of 15–29 years collected on 17 catchments in India
to compare the performance of two RFFA methods based on AI, FIS, and ANN. Using
statistical indices such as RMSE and mean absolute error (MAE), they discovered that
ANFIS outperformed ANN. In terms of accuracy and reliability, both AI-based RFFA
methods outperformed QRT. Aziz et al. [106] used similar methods based on data from
452 Australian catchments and noted that ANN produced the most accurate and robust
results based on statistical indicators such as RE, and hence they proposed that ANN could
be a viable method in Australia’s east.

Zalnezhad et al. [102] used data from 181 catchments in eastern parts of Australia to
compare the performance of ANFIS based methods (FCM, SC and GP) with QRT method
and noted that ANFIS (FCM) is the best performing method. They suggested that it could
be a viable alternative to the conventional methods used in eastern parts of Australia.

From the above discussion, it is evident that ANFIS can be used to divide the available
catchment data set into more homogeneous groups, which is likely to enhance overall
prediction accuracy. The available number of catchments should be large enough so that
meaningful sub-groups can be formed as a too small group with a handful of catchments
will result in misleading error statistics.

3.3. SVM-Based RFFA Models

The SVM method is widely used for classification, which examines data at higher
dimensions [107,108]. Several types of kernels assist SVM in classifying data by minimising
data margins, eliminating outliers, and focusing on relationships between the test and
training data. The most common kernel types used for developing SVM-based models
include linear, polynomial, radial basis function (RBF), and sigmoid function. Among
these, the SVM-based RBF kernel is the most used method that produces robust and
consistent results.

Gizaw and Gan [109] developed RFFA-based ANN and SVR methods using data
collected from 49 stations in Canada. When the results of these two methods were compared,
they found that the SVR method outperformed the ANN in terms of consistency and
generalisation ability. They also mentioned that better SVR performance could be attributed
to smaller datasets, whereas ANN would most likely produce more accurate results for
larger datasets. Sharifi Garmdareh et al. [110] estimated design floods using SVR, ANFIS,
ANN, and NLR methods using more than 20 years of recorded data from 55 hydrometric
stations in Iran. They tested various strategies for determining the best combination of
input variables and found that gamma testing (GT) was the most effective, which can
improve the result of ANFIS and SVR over a single method and that using GT reduced the
number of input variables. They also noted that combining GT with the ANFIS produced
the best results, followed by GT + SVR.

Ghaderi et al. [111] used ANFIS, SVM, and GEP to estimate flood quantiles with a
50-year return period. From 21 years of data collected from 47 catchments in Iran, they
used GM and M-test to identify the most important predictor variables and the best ratio
of test and training data. They compared the results of the three methods and noted that all
three were “good” in terms of NASH, with the SVM method slightly outperforming the
others in terms of R2 and RMSE. Vafakhah and Bozchaloei [112] used SVR, ANN, and NLR
to estimate design floods using data collected from 33 stations in Iran over 20 years. They
noted that, according to RRMSE and NASH, SVR is the most efficient method of the three
and can be used for regional flood duration curve analysis.
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Haddad and Rahman [65] used 25 to 82 years of data from 202 catchments in Australia
to evaluate 15 different combinations of multidimensional scaling (MDS), bayesian gen-
eralised least squares (BGLSR), and SVR methods to estimate design floods. They found
that the MDS-based SVR method with RBF kernel outperforming others, including linear,
polynomial, RBF, and sigmoid kernels, in terms of consistency and accuracy of the results.
They also noted that using MDS improved the overall performance of all the methods.

Allahbakhshian-Farsani et al. [59] used 19 years of data from 54 hydrometric stations in
Iran to compare the performance of several AI-based RFFA methods. This study employed
methods such as SVR, multivariate adaptive regression spline (MARS), boosted regression
trees (BRT), and projection pursuit regression (PPR). Using various statistical indices such
as NASH, RMSE, RMSE, and R2, they noted that the SVR model based on the RBF kernel
outperformed all the others, including non-linear regression.

From the above discussion it can be stated that both SVM and SVR were used in RFFA.
A large set of catchments are needed to group them into homogeneous sub-sets which can
then be subjected to SVR to estimate flood quantiles.

3.4. GA and Hybrid Type of AI-Based RFFA Models

Hybrid models typically produce better results. As shown in Table 1, many scientists
have conducted experiments based on combining various AI-based RFFA models. Some of
the most common hybrid models include genetic algorithm (GA) combined with ANN or
ANFIS. The GA is commonly used as a hybrid method in conjunction with other methods,
particularly ANN [106]. Another popular hybridisation technique used in RFFA is the
combination of canonical correlation analysis (CCA) with ANN and ANN ensembles, as
well as ANFIS methods. CCA improves the performance and reduces the complexity of
ANN-based RFFA models by exploiting regional flood data [92,97].

Seckin and Guven [113] used data from 543 catchments in Turkey to compare two
genetic programming-based techniques (GEP and LGP) with the linear regression (LR).
They found that GEP was the best operating method, closely followed by LGP and that
both soft programming methods outperformed the LR method. Aziz et al. [114] evaluated
the developed RFFA method, a combination of GA and ANN called GAANN, using data
from 452 stations in Australia. They also compared the results of their proposed method
to BPANN and noted that both methods produced similar results. When the results were
compared to QRT, they concluded that the proposed AI-based RFFA could be a viable
alternative to the traditional QRT method in Australia.
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Table 1. Summary of AI-based RFFA studies (* indicates the best model) (ANN = Artificial neural network; GA = Genetic algorithm, BGLS-QRT-ROI: Bayesian
generalized least squares QRT combined with region of influence approach, BNN = Backpropagation neural network, CANFIS = Co-active neuro fuzzy inference
system, GEP = Gene-expression programming, GRNN = generalized regression neural networks, LGP = Linear genetic programming (LGP), LR = Linear regression,
M5 = M5 model tree, MLP = Multi-layer perceptrons, MLR = Multiple linear regression, MNLR = Multiple non-linear regression, QRT = Quantile regression
technique, RBNN = Radial basis function-based neural networks, G-EANN = generalized ANN-Ensembles, EANN = ANN-Ensembles, GAANN = GA-based ANN,
BPANN = Back propagation for ANN, FIS = Fuzzy inference system, CCA = canonical correlation analysis, NLCCA = Non-linear canonical correlation analysis,
BGLSR = Bayesian generalised least squares, MDS = multidimensional scaling, MARS = multivariate adaptive regression spline, BRT = boosted regression trees,
PPR = projection pursuit regression, WNN = wavelet neural network and RFR = random forest regression).

Reference Author, Year Model Predictor Variables
(Inputs) Model Output Catchment,

Year Journal Country
(Catchment) RMSE * RRMSE/NASH * R2 *

[102] Zalnezhad
et al., 2022

ANFIS(FCM) *
ANFIS(SC)
ANFIS(GP)

QRT

A, I, MAR, SF, MAE, SDEN,
S1085, FOR Q2–100

181 Stations
40–89 Year Water Australia 50.88 RRMSE = 0.78 NA

[97] Desai and
Ouarda, 2021

CCA-RFR *
PFR

CCA-GAM
EANN
ANN

CCA-MLR
CCA-Kriging
CCA-EANN
CCA-ANN

A, MBS, FAL, AMP, AMD Q10–100
151 stations,
≥15 year

Journal of
Hydrology

Canada
(Quebec) 0.05 NASH = 0.57

RRMSE = 29.44 NA

[96] Linh et al.,
2021

WNN *
ANN SLP, SST Max monthly

discharge (MAD)
3 stations,
37 years Acta Geophysica

Iran
(Golestan Dam,

Madarsoo)
0.68 NASH = 0.99 0.99

[59]
Allahbakhshian-
Farsani et al.,

2020

SVR *
MARS

BRT
PPR
NLR

A, AA, AMP, MXP, NDP, CC,
CR, TC, P, SL, DD, SS, MBS,
PF, SDT, RA, BL, FLA, FOR,
RLA, DA, WA, EL, MXEL,

MNEL

Q2–200
54 stations,

19 years
Water Resources

Management

Iran
(Karun and

Karkhe River)
50.70 NASH = 0.94

RRMSE = 63.93 0.96

[95] Kordrostami
et al., 2020 ANN A, AEV, AMP, FOR, I, SS, SF

and DD Q5–100
88 stations,
25–82 years Geosciences

Australia
(New South

Wales)
NA RRMSE = 0.48 0.74

[65] Haddad and
Rahman, 2020

MDS-SVR *
MDS-BGLSR

A, AEV, SF, DD, SS, FOR, I
and AMP Q2–100

202 stations,
25–82 years Natural Hazards

Australia
(New South
Wales and
Victoria)

NA RRMSE = 56 0.78

[112]

Vafakhah and
Khosrobeigi
Bozchaloei,

2020

SVR *
ANN
NLR

A, AA, AEV, P, MBS, MXEL,
MNEL, EL, SL, DD, SS, AMP,

T, PF, RLA, BL, GA, RA
Q2–90

33 Stations,
20 years

Water Resources
Management

Iran
(Namak Lake) 0.11 NASH = 0.91

RRMSE = 1.45 0.96
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Table 1. Cont.

Reference Author, Year Model Predictor Variables
(Inputs) Model Output Catchment,

Year Journal Country
(Catchment) RMSE * RRMSE/NASH * R2 *

[111] Ghaderi et al.,
2019

SVM *
ANFIS

GEP

A, P, MBS, EL, L, SL, SS, DD,
MXSO, FF, L, CR, CC, AMP,

MXP, BL, FOR
Q50

47 stations,
21 years

Arabian Journal
of Geosciences

Iran
(South-west) 239.94 NASH = 0.75 0.76

[110]
Sharifi

Garmdareh
et al., 2018

ANFIS *
SVR

ANN
NLR

A, AEV, P, DD, MXEL,
MNEL, MBS, EL, SL, SS, T,

AMP,
Q2–100

55 stations,
20 years

Hydrological
Sciences Journal

Iran
(Namak Lake) 8.40 NASH = 0.90 0.95

[67] Aziz et al.,
2017

ANN *
GEP *
QRT

A, AEV, AMP, SS, I Q2–100
452 stations,
25–75 years

Stochastic
Environmental

Research and Risk
Assessment

Australia
(New South

Wales, Victoria,
Queensland and

Tasmania)

Na

NASH for ANN for
smaller ARIs = 0.78
NASH for GEP for
larger ARIs = 0.73

NA

[92] Ouali et al.,
2017

NLCCA-GAM *
NLCCA-EANN

CCA-ANN
CCA-EANN

NLCCA-ANN
NLCCA-GAM/ STPW

A, MBS, FAL, AMP, AMD Q10–100

151, 204 and
69 stations,
≥15 years

Journal of
Advances in

Modeling Earth
Systems

Canada and
United states

(Quebec,
Arkansas, Texas)

NA RRMSE = 0.28
NASH > 0.8 NA

[109] Gizaw and
Gan, 2016

SVR *
ANN A, SS, SL, TC, I, AMP Q10–100

26 and
23 stations,
≥15 years

Journal of
Hydrology

Canada
(British

Columbia,
Ontario)

46.2 NA 0.7

[106] Aziz et al.,
2016

ANN *
GAANN
CANFIS

GEP

A, AEV, I, AMP, SS, Q2–100
452 Stations,
25–75 years

Artificial Neural
Network

Modelling (Book)

Australia
(New South

Wales, Victoria,
Queensland and

Tasmania)

NA NASH = 0.69 NA

[61] Kumar et al.,
2015

FIS *
ANN

L-moments (PE3)
A, AMP, SDT, EL Q2–1000

17 stations,
15–29 years

Water Resources
Management

India
(Godavari river) 2.32 Na NA

[114] Aziz et al.,
2015

GAANN
BPANN A, I Q2–100

452 stations,
25–75 years Natural Hazards

Australia
(New South

Wales, Victoria,
Queensland,

and Tasmania)

NA NA NA

[105]
Bozchaloei

and Vafakhah,
2015

ANFIS *
ANN
NLR

A, AA, AEV, P, MBS, MXEL,
MNEL, EL, SL, DD, SS, AMP,

T, PF, RLA, BL, GA, RA
Q2–92

33 stations,
20 years

Journal of
Hydrologic
Engineering

Iran
(Namak Lake) 0.008 NASH = 0.92 0.99
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Table 1. Cont.

Reference Author, Year Model Predictor Variables
(Inputs) Model Output Catchment,

Year Journal Country
(Catchment) RMSE * RRMSE/NASH * R2 *

[87] Durocher
et al., 2015 PPR *

A, SL, SS, MBS, FOR, FAL,
AMP, AMPS, AMPL, MLS,

AMD
Q10–100

151 stations,
≥15 years

Journal of Hy-
drometeorology

Canada
(Quebec) NA RRMSE = 0.40 NA

[86] Alobaidi et al.,
2015

G-EANN *
EANN A, MBS, FAL, AMD, AMP Q10–100

151 stations,
≥15 years

Advances in
Water Resources

Canada
(Quebec) NA RRMSE = 0.34 NA

[85] Aziz et al.,
2014

ANN *
QRT A, AEV, AMP, SS, I Q2–100

452 stations,
25–75 years

Stochastic
Environmental

Research and Risk
Assessment

Australia
(New South

Wales, Victoria,
Queensland,
Tasmania)

NA NA NA

[103] Aziz et al.,
2013

BGLS-QRT-ROI *
CANFIS A and I Q2–100

452 stations,
25–75 years

Journal of
Hydrological
Environment

Resources

Australia
(New South

Wales, Victoria,
Queensland,

and Tasmania)

NA NA NA

[84] Seckin et al.,
2013

MLP *
L-moment

RBNN
GRNN
MLR

MNLR

A, EL, LAT, LON, and RP Q1.111–1000
13 stations,
10-39 years

Water Resources
Management

Turkey
(East

Mediterranean
River)

0.173 NA 0.84

[113] Seckin and
Guven, 2012

GEP *
LGP
LR

A, EL, LAT, LON, and RP Q25.7–174.3
543 stations,
≥15 years

Water Resource
Management

Turkey
(Rivers across
the country)

NA NA 0.57

[83] Singh et al.,
2010

BNN *
M5

A, MRD, AMP, RP, MBS and
FOR Q2.33

93 stations,
10–83 years

Water Resources
Management

India
(Catchments

across the
country)

NA NA NA

[82] Ouarda and
Shu, 2009

ANN *
Multiple regression

model

A, FAL, FOR, AMD, AMPL,
NT27, CN Q2–10

134 stations,
≥10 years

Water Resources
Research

Canada
(Quebec) 27.33 NASH = 0.96,

RRMSE = 36.17 NA

[55] Shu and
Ouarda, 2008

ANFIS *
ANN
NLR

NLR-R

A, MBS, FAL, AMP, AMD,
HDB, TOPO Q10–100

151 stations-
≥15 years

Journal of
Hydrology

Canada
(Quebec) 316 NASH = 0.85

RRMSE = 57 NA

[49] Srinivas et al.,
2008

SOFM *
CCA

Regional regression

A, SS, SRC, SSC, AMP, SL,
EL, FOR, R24h Q2–100

11 stations,
6–42 years

Journal of
Hydrology

United states
(Indiana) NA RRMSE = 0.276 NA

[56] Shu and
Ouarda, 2007

ANN *
ANN-CCA A, AMD, AMP, FAL, MBS Q10–50

151 stations,
≥15 year

Water Resources
Research

Canada
(Quebec) 0.053 NASH = 0.82

RRMSE = 38 NA
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Table 1. Cont.

Reference Author, Year Model Predictor Variables
(Inputs) Model Output Catchment,

Year Journal Country
(Catchment) RMSE * RRMSE/NASH * R2 *

[81] Dawson et al.,
2006

ANN *
MLR A, AMP, L, DA, IF Q10, 20, 30

850 stations,
20 years

Journal of
Hydrology

United kingdom
(Catchment

across the UK)
NA NA NA

[80] Jingyi and
Hall, 2004

ANN *
Cluster analysis

A, AMP, MXP, SL, SS, EL,
GFI and PLN Q50

86 stations
15–36 years

Journal of
Hydrology

China
(Jiangxi and

Fujian, Gan and
Ming rivers)

47 NA NA

[51] (Shu and
Burn, 2004)

ANN *
Ordinary least

squares regression
(REG_OLS)

Non-linear regression
(REG_NONLINEAR)

A, AMP, SDT, FARL Q10
404 stations

29 years
Water Resources

Management

United
Kingdom
(England,

Scotland, and
Wales)

NA NA NA
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4. Comparative Assessment

Table 1 summarises AI-based RFFA methods, while Table 2 provides a summary of the
symbols and abbreviations used in Table 1 for the adopted predictor variables. Despite the
popularity of AI-based methods in other fields, such as rainfall-runoff modelling, flood fore-
casting, and global circulation phenomena, very few publications mention AI-based RFFA.

Table 2. Symbols and abbreviation of predictor variables used in Table 1.

Symbol/Abbreviation Unit Name of Variable

A km2 Catchment area
AA km2 Agricultural area of catchment

AEV mm Annual evaporation (mean)
AMD degree-day Annual mean degree-day above 0 ◦C
AMP mm Annual mean total precipitation

AMPL mm
Mean liquid precipitation during Jul–Dec, Summer mean liquid precipitation,

Spring Precipitation—the total basin precipitation from the start of active
snowmelt to the start of the spring crest

AMPS mm
Mean solid annual precipitation, Winter precipitation—the total basin
precipitation from November 1st of previous year to the start of active

snowmelt during the flood year, measured in inches;
BL % Percentage of barren land
CC NA Watershed compactness coefficient
CN NA Curve number
CR NA Watershed circulatory ratio
DA km2 Developed area
DD NA Drainage density
EL m Elevation
EP mm Equivalent precipitation at the time of flood event

FAL % Fraction of catchment area occupied by lake
FARL NA Reservoir/lake effects

FF NA Form factor
FLA km2 Fallow land area
FOR % Percentage of catchment covered by forest
GA km2 Garden area
GFI NA Geological feature index

HDB NA Hydrological database
I mm/s Design rainfall intensity

IF NA Index flood
L km Catchment length

LAT NA Latitude
LON NA Longitude
MAR mm Mean Annual Rainfall
MAE mm Mean annual evapo-transpiration
MBS NA Mean basin slope
MLS mm Mean level of snow on the 30th of March

MNEL m Minimum watershed elevation
MRD day Average annual rainfall duration
MXEL m Maximum watershed elevation
MXP mm Maximum 24 h rainfall

MXSO NA Maximum stream order
NDP Number (NA) Number of days of precipitation
NT27 Number (NA) The average number of days with a temperature above 27 ◦C

P km Watershed perimeter
PF km2 Permeable formation area

PLN NA Plantation cover index
R24h mm 24-h rainfall having a recurrence interval of 2 years
RA km2 Rock area

RLA km2 Rangeland area
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Table 2. Cont.

Symbol/Abbreviation Unit Name of Variable

RP Year Return period
S1085 m/km Slope of central 75% of the mainstream
SDEN km−1 Stream density
SDT NA Soil drainage type
SF NA Shape factor
SL km Mainstream length

SLP Mbar Sea-level pressure
SRC NA Soil runoff coefficient
SS NA Slope of the main channel in the drainage basin

SSC NA Soil storage coefficient
SST ◦C Sea surface temperature

T ◦C Mean annual temperature
TC Hour Time of concentration

TOPO NA Topographic digital maps
WA % Water area

5. Bibliometric Analysis

Figure 3 depicts the most commonly used AI-based RFFA methods from 2004 to 2021.
Since 2004, the number of publications based on AI has gradually increased, with the
highest number of publications in 2015. As shown in Figure 3, ANN has been the most
popular AI-based RFFA method; however, the popularity of other methods such as SVM
and ANFIS has increased in recent years, with SVM being the most popular model in 2020.
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Figure 3. Usage frequency of AI-based RFFA methods during 2004–2021.

Figure 4 presents a bar graph of the most used predictor variables in estimating design
floods. The A and AMP were the most used predictor variables in these studies, with
29 appearances for A and 24 for AMP, followed by other variables such as MBS, EL and SS.
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Figure 4. Predictor variables used in flood estimations.

Figure 5 shows map of authorship of the AI-based RFFA articles and the network of
co-authorships. Here, the bigger the circle, the greater the number of papers published by
the country. It can be seen that Australia, Canada, and Iran have published the highest
number of articles in this research field, which is followed by Turkey, United Arab Emirates
(UAE), India, and China. The third most important group consists of USA, the Netherlands,
Germany, Malaysia, and Ethiopia. It can also be seen that Iran has the strongest network
of co-authorship (linked with Germany, Malaysia, India, Ethiopia, China and Ireland),
followed by India (linked with USA, Ethiopia, Iran, and China).
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Figure 6 depicts some of the world’s most active researchers working on flood research
using AI-based models. Most of the authors are working in groups, and as it can be seen in
this figure, Prof Vafakhah (Iran), Prof Taha Ouarda (Canada) and Prof Rahman (Australia)
are the most active authors in this area. Figure 7 shows the authors’ preferred destinations
for publishing their studies on AI-based flood research. The most popular journals are
Water Resources Management and Journal of Hydrology, followed by other journals such as
Water Resources Research and Natural Hazards. These are prestigious journals in hydrology
which indicates that AI-based RFFA methods have scientific merits to be included in
these journals.

Figure 6. Map showing clusters of authors.
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6. Challenges and Future Research Directions

In RFFA research, the main challenge is the lack of available data to train and test a
model adequately. For example, in the Australian continent, about 800 stations are available
having data with sufficient length and quality, which is too little to develop a reliable RFFA
model covering an area of 7.69 km2 (22 times bigger than Germany).
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For most of the AI-based RFFA methods, quality data is very important, similar to
other RFFA methods. The reported streamflow data often suffers from rating curve error,
gaps and inconsistency, which must be considered in developing an AI-based RFFA model
for practical applications. It is often better to use an integrated AI-based approach where
several methods are combined and tested instead of a single approach.

For the interpretation of results of an AI-based RFFA technique, an expertise is needed
as model assumptions must be well understood in relation to derived results before ac-
cepting results for design application. To tackle with the bias in the final results is often a
challenging task, which depends on both the data quality and quantity and the optimiza-
tion methods adopted to train and test the model. The sampling error in the dependent
variable (e.g., the estimated flood quantile) is often ignored; however, it could be a sig-
nificant source of uncertainty in RFFA in particular when streamflow data lengths of the
selected catchments are too small (e.g., smaller than 20 years). The impact of climate change
on streamflow data is becoming more prominent, which will make previously recorded
streamflow data unsuitable. To incorporate non-stationarity in the AI-based RFFA methods
is a challenge and needs further research. Another challenging aspect is the identification
of the main sources of uncertainty, which stems from data reliability and model parameter
estimation methods. A confidence interval estimation for the estimated flood quantiles is
desirable with all the AI-based RFFA methods, which needs further research.

7. Conclusions

This study demonstrates that AI-based RFFA methods are becoming more appealing
for estimating design floods than the linear models such as regression analysis. The
majority of the articles chosen compare the accuracy and performance of various linear,
non-linear, and AI-based RFFA methods. Because AI is a promising technique, most of
these articles are published in prestigious journals. The most common AI-based methods
for estimating design floods are ANN, ANFIS, and SVM, which have grown in popularity
over the last decade. Hydrologists have experimented with various methods to improve
the performance of the AI-based RFFA methods and the accuracy of estimation. Some of the
common approaches used to improve the performance of AI-based methods include hybrid
methods, data clustering, and the use of optimisation algorithms. According to evaluation
statistics such as RMSE, NASH, RRMSE, and R2, most AI-based RFFA methods outperform
many traditional methods in terms of accuracy and reliability. They are typically data-
driven models and require little to no understanding of the physics of flood generation
processes, making them user-friendly. It has also been noticed that some AI-based models
perform better in specific situations and locations, implying that it is preferable to test
various AI-based RFFA methods to find the best possible model for the area of interest.
Australia, Canada, and Iran have published the highest number of articles on AI based
RFFA techniques, followed by Turkey, the United Arab Emirates (UAE), India, and China.
Future research should concentrate on the effects of data quantity and quality, model
uncertainty, and climate change, which includes rising temperatures, rising sea levels, and
changes in rainfall intensity, on the overall results of AI-based RFFA techniques.
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