3,953 research outputs found

    Investigation of the quasifission process by theoretical analysis of experimental data of fissionlike reaction products

    Get PDF
    The fusion excitation function is the important quantity in planning experiments for the synthesis of superheavy elements. Its values seem to be determined by the experimental study of the hindrance to complete fusion by the observation of mass, angular and energy distributions of the fissionlike fragments. There is ambiguity in establishment of the reaction mechanism leading to the observed binary fissionlike fragments. The fissionlike fragments can be produced in the quasifission, fast fission, and fusion-fission processes which have overlapping in the mass (angular, kinetic energy) distributions of fragments. The branching ratio between quasifission and complete fusion strongly depends on the characteristics of the entrance channel. In this paper we consider a wide set of reactions (with different mass asymmetry and mass symmetry parameters) with the aim to explain the role played by many quantities on the reaction mechanisms. We also present the results of study of the 48^{48}Ca+249^{249}Bk reaction used to synthesize superheavy nuclei with Z = 117 by the determination of the evaporation residue cross sections and the effective fission barriers of excited nuclei formed along the de-excitation cascade of the compound nucleus.Comment: 21 pages, 15 figures, 2 table

    Theory of integer quantum Hall polaritons in graphene

    Get PDF
    We present a theory of the cavity quantum electrodynamics of the graphene cyclotron resonance. By employing a canonical transformation, we derive an effective Hamiltonian for the system comprised of two neighboring Landau levels dressed by the cavity electromagnetic field (integer quantum Hall polaritons). This generalized Dicke Hamiltonian, which contains terms that are quadratic in the electromagnetic field and respects gauge invariance, is then used to calculate thermodynamic properties of the quantum Hall polariton system. Finally, we demonstrate that the generalized Dicke description fails when the graphene sheet is heavily doped, i.e. when the Landau level spectrum of 2D massless Dirac fermions is approximately harmonic. In this case we `integrate out' the Landau levels in valence band and obtain an effective Hamiltonian for the entire stack of Landau levels in conduction band, as dressed by strong light-matter interactions.Comment: 20 pages, 7 figure

    Mutual information as an order parameter for quantum synchronization

    Full text link
    Spontaneous synchronization is a fundamental phenomenon, important in many theoretical studies and applications. Recently this effect has been analyzed and observed in a number of physical systems close to the quantum mechanical regime. In this work we propose the mutual information as a useful order parameter which can capture the emergence of synchronization in very different contexts, ranging from semi-classical to intrinsically quantum mechanical systems. Specifically we first study the synchronization of two coupled Van der Pol oscillators in both classical and quantum regimes and later we consider the synchronization of two qubits inside two coupled optical cavities. In all these contexts, we find that mutual information can be used as an appropriate figure of merit for determining the synchronization phases, independently of the specific details of the system

    Dynamics of entanglement in quantum computers with imperfections

    Full text link
    The dynamics of the pairwise entanglement in a qubit lattice in the presence of static imperfections exhibits different regimes. We show that there is a transition from a perturbative region, where the entanglement is stable against imperfections, to the ergodic regime, in which a pair of qubits becomes entangled with the rest of the lattice and the pairwise entanglement drops to zero. The transition is almost independent of the size of the quantum computer. We consider both the case of an initial maximally entangled and separable state. In this last case there is a broad crossover region in which the computer imperfections can be used to create a significant amount of pairwise entanglement.Comment: 4 pages, 4 figure

    Sensitive methods for estimating the anchoring strength of nematic liquid crystals on Langmuir-Blodgett monolayers of fatty acids

    Full text link
    The anchoring of the nematic liquid crystal N-(p-methoxybenzylidene)-p-butylaniline (MBBA) on Langmuir-Blodgett monolayers of fatty acids (COOHCn_{n}H2n+1_{2n+1}) was studied as a function of the length of the fatty acid alkyl chains, nn (n=15,17,19,21n = 15, 17, 19, 21). The monolayers were deposited onto ITO-coated glass plates which were used to assemble sandwich cells of various thickness that were filled with MBBA in the nematic phase. The mechanism of relaxation from the flow-induced quasi-planar to the surface-induced homeotropic alignment was studied for the four decreases linearly with increasing the length of the alkyl chains nn which suggests that the Langmuir-Blodgett film plays a role in the phenomenon. This fact was confirmed by a sensitive estimation of the anchoring strength of MBBA on the fatty acid monolayers after anchoring breaking which takes place at the transition between two electric-field--induced turbulent states, denoted as DSM1 and DSM2. It was found that the threshold electric field for the anchoring breaking, which can be considered as a measure of the anchoring strength, also decreases linearly as nn increases. Both methods thus possess a high sensitivity in resolving small differences in anchoring strength. In cells coated with mixed Langmuir-Blodgett monolayers of two fatty acids (n=15n=15 and n=17n=17) a maximum of the relaxation speed was observed when the two acids were present in equal amount. This observation homeotropic cells by changing the ratio between the components of the surfactant film.Comment: LaTeX article, 20 pages, 15 figures, 17 EPS files. 1 figure added, references moved. Submitted to Phys. Rev.

    CleAir monitoring system for particulate matter. A case in the Napoleonic Museum in Rome

    Get PDF
    Monitoring the air particulate concentration both outdoors and indoors is becoming a more relevant issue in the past few decades. An innovative, fully automatic, monitoring system called CleAir is presented. Such a system wants to go beyond the traditional technique (gravimetric analysis), allowing for a double monitoring approach: the traditional gravimetric analysis as well as the optical spectroscopic analysis of the scattering on the same filters in steady-state conditions. The experimental data are interpreted in terms of light percolation through highly scattering matter by means of the stretched exponential evolution. CleAir has been applied to investigate the daily distribution of particulate matter within the Napoleonic Museum in Rome as a test case

    Generating topological order from a 2D cluster state using a duality mapping

    Full text link
    In this paper we prove, extend and review possible mappings between the two-dimensional Cluster state, Wen's model, the two-dimensional Ising chain and Kitaev's toric code model. We introduce a two-dimensional duality transformation to map the two-dimensional lattice cluster state into the topologically-ordered Wen model. Then, we subsequently investigates how this mapping could be achieved physically, which allows us to discuss the rate at which a topologically ordered system can be achieved. Next, using a lattice fermionization method, Wen's model is mapped into a series of one-dimensional Ising interactions. Considering the boundary terms with this mapping then reveals how the Ising chains interact with one another. The relationships discussed in this paper allow us to consider these models from two different perspectives: From the perspective of condensed matter physics these mappings allow us to learn more about the relation between the ground state properties of the four different models, such as their entanglement or topological structure. On the other hand, we take the duality of these models as a starting point to address questions related to the universality of their ground states for quantum computation.Comment: 5 Figure
    corecore