187 research outputs found

    Transcriptome analysis in switchgrass discloses ecotype difference in photosynthetic efficiency

    Get PDF
    Citation: Serba, D. D., Uppalapati, S. R., Krom, N., Mukherjee, S., Tang, Y. H., Mysore, K. S., & Saha, M. C. (2016). Transcriptome analysis in switchgrass discloses ecotype difference in photosynthetic efficiency. Bmc Genomics, 17, 14. doi:10.1186/s12864-016-3377-8Background: Switchgrass, a warm-season perennial grass studied as a potential dedicated biofuel feedstock, is classified into two main taxa - lowland and upland ecotypes - that differ in morphology and habitat of adaptation. But there is limited information on their inherent molecular variations. Results: Transcriptome analysis by RNA-sequencing (RNA-Seq) was conducted for lowland and upland ecotypes to document their gene expression variations. Mapping of transcriptome to the reference genome (Panicum virgatum v1. 1) revealed that the lowland and upland ecotypes differ substantially in sets of genes transcribed as well as levels of expression. Differential gene expression analysis exhibited that transcripts related to photosynthesis efficiency and development and photosystem reaction center subunits were upregulated in lowlands compared to upland genotype. On the other hand, catalase isozymes, helix-loop-helix, late embryogenesis abundant group I, photosulfokinases, and S-adenosyl methionine synthase gene transcripts were upregulated in the upland compared to the lowlands. At >= 100x coverage and >= 5% minor allele frequency, a total of 25,894 and 16,979 single nucleotide polymorphism (SNP) markers were discovered for VS16 (upland ecotype) and K5 (lowland ecotype) against the reference genome. The allele combination of the SNPs revealed that the transition mutations are more prevalent than the transversion mutations. Conclusions: The gene ontology (GO) analysis of the transcriptome indicated lowland ecotype had significantly higher representation for cellular components associated with photosynthesis machinery controlling carbon fixation. In addition, using the transcriptome data, SNP markers were detected, which were distributed throughout the genome. The differentially expressed genes and SNP markers detected in this study would be useful resources for traits mapping and gene transfer across ecotypes in switchgrass breeding for increased biomass yield for biofuel conversion

    Human Umbilical Cord Matrix Mesenchymal Stem Cells Suppress the Growth of Breast Cancer by Expression of Tumor Suppressor Genes

    Get PDF
    Citation: Ohta, N., Ishiguro, S., Kawabata, A., Uppalapati, D., Pyle, M., Troyer, D., . . . Tamura, M. (2015). Human Umbilical Cord Matrix Mesenchymal Stem Cells Suppress the Growth of Breast Cancer by Expression of Tumor Suppressor Genes. Plos One, 10(5), 17. doi:10.1371/journal.pone.0123756Human and rat umbilical cord matrix mesenchymal stem cells (UCMSC) possess the ability to control the growth of breast carcinoma cells. Comparative analyses of two types of UCMSC suggest that rat UCMSC-dependent growth regulation is significantly stronger than that of human UCMSC. Their different tumoricidal abilities were clarified by analyzing gene expression profiles in the two types of UCMSC. Microarray analysis revealed differential gene expression between untreated naive UCMSC and those co-cultured with species-matched breast carcinoma cells. The analyses screened 17 differentially expressed genes that are commonly detected in both human and rat UCMSC. The comparison between the two sets of gene expression profiles identified two tumor suppressor genes, adipose-differentiation related protein (ADRP) and follistatin (FST), that were specifically up-regulated in rat UCMSC, but down-regulated in human UCMSC when they were co-cultured with the corresponding species' breast carcinoma cells. Over-expression of FST, but not ADRP, in human UCMSC enhanced their ability to suppress the growth of MDA-231 cells. The growth of MDA-231 cells was also significantly lower when they were cultured in medium conditioned with FST, but not ADRP over-expressing human UCMSC. In the breast carcinoma lung metastasis model generated with MDA-231 cells, systemic treatment with FST-over-expressing human UCMSC significantly attenuated the tumor burden. These results suggest that FST may play an important role in exhibiting stronger tumoricidal ability in rat UCMSC than human UCMSC and also implies that human UCMSC can be transformed into stronger tumoricidal cells by enhancing tumor suppressor gene expression

    A Genetic Screen Reveals Arabidopsis Stomatal and/or Apoplastic Defenses against Pseudomonas syringae pv. tomato DC3000

    Get PDF
    Bacterial infection of plants often begins with colonization of the plant surface, followed by entry into the plant through wounds and natural openings (such as stomata), multiplication in the intercellular space (apoplast) of the infected tissues, and dissemination of bacteria to other plants. Historically, most studies assess bacterial infection based on final outcomes of disease and/or pathogen growth using whole infected tissues; few studies have genetically distinguished the contribution of different host cell types in response to an infection. The phytotoxin coronatine (COR) is produced by several pathovars of Pseudomonas syringae. COR-deficient mutants of P. s. tomato (Pst) DC3000 are severely compromised in virulence, especially when inoculated onto the plant surface. We report here a genetic screen to identify Arabidopsis mutants that could rescue the virulence of COR-deficient mutant bacteria. Among the susceptible to coronatine-deficient Pst DC3000 (scord) mutants were two that were defective in stomatal closure response, two that were defective in apoplast defense, and four that were defective in both stomatal and apoplast defense. Isolation of these three classes of mutants suggests that stomatal and apoplastic defenses are integrated in plants, but are genetically separable, and that COR is important for Pst DC3000 to overcome both stomatal guard cell- and apoplastic mesophyll cell-based defenses. Of the six mutants defective in bacterium-triggered stomatal closure, three are defective in salicylic acid (SA)-induced stomatal closure, but exhibit normal stomatal closure in response to abscisic acid (ABA), and scord7 is compromised in both SA- and ABA-induced stomatal closure. We have cloned SCORD3, which is required for salicylic acid (SA) biosynthesis, and SCORD5, which encodes an ATP-binding cassette (ABC) protein, AtGCN20/AtABCF3, predicted to be involved in stress-associated protein translation control. Identification of SCORD5 begins to implicate an important role of stress-associated protein translation in stomatal guard cell signaling in response to microbe-associated molecular patterns and bacterial infection

    AGS3 antagonizes LGN to balance oriented cell divisions and cell fate choices in mammalian epidermis

    Get PDF
    Oriented cell divisions balance self-renewal and differentiation in stratified epithelia such as the skin epidermis. During peak epidermal stratification, the distribution of division angles among basal keratinocyte progenitors is bimodal, with planar and perpendicular divisions driving symmetric and asymmetric daughter cell fates, respectively. An apically restricted, evolutionarily conserved spindle orientation complex that includes the scaffolding protein LGN/Pins/Gpsm2 plays a central role in promoting perpendicular divisions and stratification, but why only a subset of cell polarize LGN is not known. Here, we demonstrate that the LGN paralog, AGS3/Gpsm1, is a novel negative regulator of LGN and inhibits perpendicular divisions. Static and ex vivo live imaging reveal that AGS3 overexpression displaces LGN from the apical cortex and increases planar orientations, while AGS3 loss prolongs cortical LGN localization and leads to a perpendicular orientation bias. Genetic epistasis experiments in double mutants confirm that AGS3 operates through LGN. Finally, clonal lineage tracing shows that LGN and AGS3 promote asymmetric and symmetric fates, respectively, while also influencing differentiation through delamination. Collectively, these studies shed new light on how spindle orientation influences epidermal stratification

    Molecular phylogeny, pathogenicity and toxigenicity of Fusarium oxysporum f. sp. lycopersici

    Get PDF
    The present study aimed at the molecular characterization of pathogenic and non pathogenic F. oxysporum f. sp. lycopersici strains isolated from tomato. The causal agent isolated from symptomatic plants and soil samples was identified based on morphological and molecular analyses. Pathogenicity testing of 69 strains on five susceptible tomato varieties showed 45% of the strains were highly virulent and 30% were moderately virulent. Molecular analysis based on the fingerprints obtained through ISSR indicated the presence of wide genetic diversity among the strains. Phylogenetic analysis based on ITS sequences showed the presence of at least four evolutionary lineages of the pathogen. The clustering of F. oxysporum with non pathogenic isolates and with the members of other formae speciales indicated polyphyletic origin of F. oxysporum f. sp. lycopersici. Further analysis revealed intraspecies variability and nucleotide insertions or deletions in the ITS region among the strains in the study and the observed variations were found to be clade specific. The high genetic diversity in the pathogen population demands for development of effective resistance breeding programs in tomato. Among the pathogenic strains tested, toxigenic strains harbored the Fum1 gene clearly indicating that the strains infecting tomato crops have the potential to produce Fumonisin

    Chemical and Metabolic Aspects of Antimetabolite Toxins Produced by Pseudomonas syringae Pathovars

    Get PDF
    Pseudomonas syringae is a phytopathogenic bacterium present in a wide variety of host plants where it causes diseases with economic impact. The symptoms produced by Pseudomonas syringae include chlorosis and necrosis of plant tissues, which are caused, in part, by antimetabolite toxins. This category of toxins, which includes tabtoxin, phaseolotoxin and mangotoxin, is produced by different pathovars of Pseudomonas syringae. These toxins are small peptidic molecules that target enzymes of amino acids’ biosynthetic pathways, inhibiting their activity and interfering in the general nitrogen metabolism. A general overview of the toxins’ chemistry, biosynthesis, activity, virulence and potential applications will be reviewed in this work
    corecore