28 research outputs found

    Use of Phragmites australis for controlling phospohrus contamination in anthropogenic wetland ecosystems

    Full text link
    This is an Author's Accepted Manuscript of an article published in J. M. Carricondo, J. V. Oliver-Villanueva, J. V. Turégano, J. A. González & J. Mengual (2021) Use of Phragmites australis for controlling phosphorus contamination in anthropogenic wetland ecosystems, Environmental Technology, 42:19, 3055-3064, DOI: 10.1080/09593330.2020.1720311 [copyright Taylor & Francis], available online at: http://www.tandfonline.com/10.1080/09593330.2020.1720311[EN] Continuous phosphorus discharges in bodies of water, generated by human activities, such as agriculture, domestic effluences or wastewater from industrial processes, produce contaminated water and eutrophication. For this reason, efficient and low-cost systems that can remove phosphorus from contaminated water are necessary. In addition, it is important to generate renewable energy such as the energy produced in biomass power plants, taking advantage of the available biomass waste in each place. When producing this renewable energy, the resulting ash is a residue that can be used for phosphorus removal by adsorption processes. Moreover, according to the concept of the circular economy, the ash waste generated in this bio energy process should be reduced as much as possible. One of the advantages of this research being that surplus phosphorus-laden ash can be reused as fertilizer in agricultural fields. Considering this, the efficiency of reed ash (RA) (Phragmites australis) has been analysed in batch experiments, as well as the effect of several parameters on the removal of phosphate, such as contact time, phosphate-ash ratio, ash dose and temperature. Significant results obtained show that RA can be used to improve water quality.Carricondo, JM.; Oliver Villanueva, JV.; Turegano Pastor, JV.; González Romero, JA.; Mengual Cuquerella, J. (2021). Use of Phragmites australis for controlling phospohrus contamination in anthropogenic wetland ecosystems. Environmental Technology. 42(19):3055-3064. https://doi.org/10.1080/09593330.2020.1720311S305530644219Rodrigo, M. A., Valentín, A., Claros, J., Moreno, L., Segura, M., Lassalle, M., & Vera, P. (2018). Assessing the effect of emergent vegetation in a surface-flow constructed wetland on eutrophication reversion and biodiversity enhancement. Ecological Engineering, 113, 74-87. doi:10.1016/j.ecoleng.2017.11.021Ahmad, S. S., Reshi, Z. A., Shah, M. A., Rashid, I., Ara, R., & Andrabi, S. M. A. (2014). Phytoremediation Potential ofPhragmites australisin Hokersar Wetland - A Ramsar Site of Kashmir Himalaya. International Journal of Phytoremediation, 16(12), 1183-1191. doi:10.1080/15226514.2013.821449Chandra, R., & Yadav, S. (2011). Phytoremediation of CD, CR, CU, MN, FE, NI, PB and ZN from Aqueous Solution UsingPhragmites Cummunis, Typha AngustifoliaandCyperus Esculentus. International Journal of Phytoremediation, 13(6), 580-591. doi:10.1080/15226514.2010.495258Brix, H., Schierup, H.-H., & Arias, C. A. (2007). Twenty years experience with constructed wetland systems in Denmark – what did we learn? Water Science and Technology, 56(3), 63-68. doi:10.2166/wst.2007.522Vybernaite-Lubiene, I., Zilius, M., Giordani, G., Petkuviene, J., Vaiciute, D., Bukaveckas, P. A., & Bartoli, M. (2017). Effect of algal blooms on retention of N, Si and P in Europe’s largest coastal lagoon. Estuarine, Coastal and Shelf Science, 194, 217-228. doi:10.1016/j.ecss.2017.06.020Del Barrio Fernández, P., Gómez, A. G., Alba, J. G., Díaz, C. Á., & Revilla Cortezón, J. A. (2012). A model for describing the eutrophication in a heavily regulated coastal lagoon. Application to the Albufera of Valencia (Spain). Journal of Environmental Management, 112, 340-352. doi:10.1016/j.jenvman.2012.08.019Uddin, M. N., & Robinson, R. W. (2018). Can nutrient enrichment influence the invasion of Phragmites australis? Science of The Total Environment, 613-614, 1449-1459. doi:10.1016/j.scitotenv.2017.06.131Ailstock, M. S., Norman, C. M., & Bushmann, P. J. (2001). Common ReedPhragmites australis: Control and Effects Upon Biodiversity in Freshwater Nontidal Wetlands. Restoration Ecology, 9(1), 49-59. doi:10.1046/j.1526-100x.2001.009001049.xColeman, H. M., & Levine, J. M. (2006). Mechanisms underlying the impacts of exotic annual grasses in a coastal California meadow. Biological Invasions, 9(1), 65-71. doi:10.1007/s10530-006-9008-6Farnsworth, E. J., & Meyerson, L. A. (2003). Comparative ecophysiology of four wetland plant species along a continuum of invasiveness. Wetlands, 23(4), 750-762. doi:10.1672/0277-5212(2003)023[0750:ceofwp]2.0.co;2Holdredge, C., & Bertness, M. D. (2010). Litter legacy increases the competitive advantage of invasive Phragmites australis in New England wetlands. Biological Invasions, 13(2), 423-433. doi:10.1007/s10530-010-9836-2Verhoeven, J. T. A., & Setter, T. L. (2009). Agricultural use of wetlands: opportunities and limitations. Annals of Botany, 105(1), 155-163. doi:10.1093/aob/mcp172Pinto, E., Almeida, A., & Ferreira, I. M. P. L. V. O. (2016). Essential and non-essential/toxic elements in rice available in the Portuguese and Spanish markets. Journal of Food Composition and Analysis, 48, 81-87. doi:10.1016/j.jfca.2016.02.008Li, M., Liu, J., Xu, Y., & Qian, G. (2016). Phosphate adsorption on metal oxides and metal hydroxides: A comparative review. Environmental Reviews, 24(3), 319-332. doi:10.1139/er-2015-0080Correll, D. L. (1998). The Role of Phosphorus in the Eutrophication of Receiving Waters: A Review. Journal of Environmental Quality, 27(2), 261-266. doi:10.2134/jeq1998.00472425002700020004xSharpley, A. N., Chapra, S. C., Wedepohl, R., Sims, J. T., Daniel, T. C., & Reddy, K. R. (1994). Managing Agricultural Phosphorus for Protection of Surface Waters: Issues and Options. Journal of Environmental Quality, 23(3), 437-451. doi:10.2134/jeq1994.00472425002300030006xMaiga Y, von Sperling M, Mihelcic J. Constructed Wetlands. In: Rose JB and Jiménez-Cisneros B (eds) Global Water Pathogen Project. http://www.waterpathogens.org (Haas C, Mihelcic JR and Verbyla ME) (eds) Part 4 Management Of Risk from Excreta and Wastewater). http://www.waterpathogen 2017.Vymazal, J., & Březinová, T. (2016). Accumulation of heavy metals in aboveground biomass of Phragmites australis in horizontal flow constructed wetlands for wastewater treatment: A review. Chemical Engineering Journal, 290, 232-242. doi:10.1016/j.cej.2015.12.108Zhang, Y., Song, C., Ji, L., Liu, Y., Xiao, J., Cao, X., & Zhou, Y. (2018). Cause and effect of N/P ratio decline with eutrophication aggravation in shallow lakes. Science of The Total Environment, 627, 1294-1302. doi:10.1016/j.scitotenv.2018.01.327Rai, P. K. (2008). Heavy Metal Pollution in Aquatic Ecosystems and its Phytoremediation using Wetland Plants: An ecosustainable approach. International Journal of Phytoremediation, 10(2), 133-160. doi:10.1080/15226510801913918Meuleman, A. F. M., Beekman, J. P., & Verhoeven, J. T. A. (2002). Nutrient retention and nutrient-use efficiency in Phragmites australis stands after wasterwater application. Wetlands, 22(4), 712-721. doi:10.1672/0277-5212(2002)022[0712:nranue]2.0.co;2Važić, T., Svirčev, Z., Dulić, T., Krstić, K., & Obreht, I. (2015). Potential for energy production from reed biomass in the Vojvodina region (north Serbia). Renewable and Sustainable Energy Reviews, 48, 670-680. doi:10.1016/j.rser.2015.04.034Matsumura, Y., Minowa, T., & Yamamoto, H. (2005). Amount, availability, and potential use of rice straw (agricultural residue) biomass as an energy resource in Japan. Biomass and Bioenergy, 29(5), 347-354. doi:10.1016/j.biombioe.2004.06.015Kumari, M., & Tripathi, B. D. (2015). Efficiency of Phragmites australis and Typha latifolia for heavy metal removal from wastewater. Ecotoxicology and Environmental Safety, 112, 80-86. doi:10.1016/j.ecoenv.2014.10.034Boluda, R., Andreu, V., Gilabert, M. A., & Sobrino, P. (1993). Relation between reflectance of rice crop and indices of pollution by heavy metals in soils of albufera natural park (Valencia, Spain). Soil Technology, 6(4), 351-363. doi:10.1016/0933-3630(93)90025-aYadav, D., Kapur, M., Kumar, P., & Mondal, M. K. (2015). Adsorptive removal of phosphate from aqueous solution using rice husk and fruit juice residue. Process Safety and Environmental Protection, 94, 402-409. doi:10.1016/j.psep.2014.09.005UGURLU, A. (1998). Phosphorus removal by fly ash. Environment International, 24(8), 911-918. doi:10.1016/s0160-4120(98)00079-8Abbas, M. N. (2014). Phosphorus removal from wastewater using rice husk and subsequent utilization of the waste residue. Desalination and Water Treatment, 55(4), 970-977. doi:10.1080/19443994.2014.922494El-Sobky, E.-S. E. A. (2017). Effect of burned rice straw, phosphorus and nitrogen fertilization on wheat ( Triticum aestivum L.). Annals of Agricultural Sciences, 62(1), 113-120. doi:10.1016/j.aoas.2017.05.007Smol, M., Kulczycka, J., Henclik, A., Gorazda, K., & Wzorek, Z. (2015). The possible use of sewage sludge ash (SSA) in the construction industry as a way towards a circular economy. Journal of Cleaner Production, 95, 45-54. doi:10.1016/j.jclepro.2015.02.051Mor, S., Chhoden, K., & Ravindra, K. (2016). Application of agro-waste rice husk ash for the removal of phosphate from the wastewater. Journal of Cleaner Production, 129, 673-680. doi:10.1016/j.jclepro.2016.03.088Seliem, M. K., Komarneni, S., & Abu Khadra, M. R. (2016). Phosphate removal from solution by composite of MCM-41 silica with rice husk: Kinetic and equilibrium studies. Microporous and Mesoporous Materials, 224, 51-57. doi:10.1016/j.micromeso.2015.11.011Ahmaruzzaman, M. (2010). A review on the utilization of fly ash. Progress in Energy and Combustion Science, 36(3), 327-363. doi:10.1016/j.pecs.2009.11.003Langmuir, I. (1916). THE CONSTITUTION AND FUNDAMENTAL PROPERTIES OF SOLIDS AND LIQUIDS. PART I. SOLIDS. Journal of the American Chemical Society, 38(11), 2221-2295. doi:10.1021/ja02268a002Chen, Y., Wang, F., Duan, L., Yang, H., & Gao, J. (2016). Tetracycline adsorption onto rice husk ash, an agricultural waste: Its kinetic and thermodynamic studies. Journal of Molecular Liquids, 222, 487-494. doi:10.1016/j.molliq.2016.07.090Ma, Z., Li, Q., Yue, Q., Gao, B., Li, W., Xu, X., & Zhong, Q. (2011). Adsorption removal of ammonium and phosphate from water by fertilizer controlled release agent prepared from wheat straw. Chemical Engineering Journal, 171(3), 1209-1217. doi:10.1016/j.cej.2011.05.027Vassileva, P., & Voikova, D. (2009). Investigation on natural and pretreated Bulgarian clinoptilolite for ammonium ions removal from aqueous solutions. Journal of Hazardous Materials, 170(2-3), 948-953. doi:10.1016/j.jhazmat.2009.05.062SHI, Z., LIU, F., & YAO, S. (2011). Adsorptive removal of phosphate from aqueous solutions using activated carbon loaded with Fe(III) oxide. New Carbon Materials, 26(4), 299-306. doi:10.1016/s1872-5805(11)60083-8Wu, Y., Li, X., Yang, Q., Wang, D., Xu, Q., Yao, F., … Huang, X. (2019). Hydrated lanthanum oxide-modified diatomite as highly efficient adsorbent for low-concentration phosphate removal from secondary effluents. Journal of Environmental Management, 231, 370-379. doi:10.1016/j.jenvman.2018.10.059Vohla, C., Kõiv, M., Bavor, H. J., Chazarenc, F., & Mander, Ü. (2011). Filter materials for phosphorus removal from wastewater in treatment wetlands—A review. Ecological Engineering, 37(1), 70-89. doi:10.1016/j.ecoleng.2009.08.003Xia, P., Wang, X., Wang, X., Song, J., Wang, H., Zhang, J., & Zhao, J. (2016). Struvite crystallization combined adsorption of phosphate and ammonium from aqueous solutions by mesoporous MgO⿿loaded diatomite. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 506, 220-227. doi:10.1016/j.colsurfa.2016.05.101Wong, A., Navarro, E. A., & Abril, A. J. (2013). Microalgal oil production for use in rice farms in Albufera (València) region. International Journal of Green Economics, 7(2), 181. doi:10.1504/ijge.2013.057437Delivand, M. K., Barz, M., & Gheewala, S. H. (2011). Logistics cost analysis of rice straw for biomass power generation in Thailand. Energy, 36(3), 1435-1441. doi:10.1016/j.energy.2011.01.026Schiemenz, K., & Eichler-Löbermann, B. (2010). Biomass ashes and their phosphorus fertilizing effect on different crops. Nutrient Cycling in Agroecosystems, 87(3), 471-482. doi:10.1007/s10705-010-9353-9Ahmed, M. J. (2017). Application of raw and activated Phragmites australis as potential adsorbents for wastewater treatments. Ecological Engineering, 102, 262-269. doi:10.1016/j.ecoleng.2017.01.04

    Size, Shape, and Distribution of Multivesicular Bodies in the Juvenile Rat Somatosensory Cortex: A 3D Electron Microscopy Study

    Get PDF
    Multivesicular bodies (MVBs) are membrane-bound organelles that belong to the endosomal pathway. They participate in the transport, sorting, storage, recycling, degradation, and release of multiple substances. They interchange cargo with other organelles and participate in their renovation and degradation. We have used focused ion beam milling and scanning electron microscopy (FIB-SEM) to obtain stacks of serial sections from the neuropil of the somatosensory cortex of the juvenile rat. Using dedicated software, we have 3D-reconstructed 1618 MVBs. The mean density of MVBs was 0.21 per cubic micron. They were unequally distributed between dendrites (39.14%), axons (18.16%), and nonsynaptic cell processes (42.70%). About one out of five MVBs (18.16%) were docked on mitochondria, representing the process by which the endosomal pathway participates in mitochondrial maintenance. Other features of MVBs, such as the presence of tubular protrusions (6.66%) or clathrin coats (19.74%) can also be interpreted in functional terms, since both are typical of early endosomes. The sizes of MVBs follow a lognormal distribution, with differences across cortical layers and cellular compartments. The mean volume of dendritic MVBs is more than twice as large as the volume of axonic MVBs. In layer I, they are smaller, on average, than in the other layers.The Spanish “Ministerio de Ciencia, Innovación y Universidades” (grant PGC2018-094307-B-I00 and the Cajal Blue Brain Project [C080020-09; the Spanish partner of the Blue Brain Project initiative from EPFL, Switzerland]; the European Union’s Horizon 2020 Research and Innovation Programme under grant agreement No. 785907 (Human Brain Project, SGA2) and; Centro de Investigacion en Red sobre Enfermedades Neurodegenerativas (CIBERNED, CB06/05/0066, Spain)

    Efectos del riego deficitario controlado sobre el crecimiento, producción y calidad de la fruta en cítricos de la variedad Navelina

    Get PDF
    An experiment on regulated deficit irrigation (RDI) was performed during two growing seasons (2007 and 2008) in a drip-irrigated orchard of Navelina/Cleopatra in Senyera (Valencia, Spain). Two RDI treatments, where water application was reduced to 40% and 60% of the «irrigation dose» (ID), were carried out during the initial fruit enlargement phase (Stage II, 17th July to 2nd September). The rest of the year they were irrigated at 110% ID. These treatments were compared with a control, where irrigation was applied without restriction during the whole year at 110% ID. The ID was obtained from the evapotranspiration data, as well as from the characteristic variables of drip irrigation for the specific experimental orchard. The effects of the treatments on yield, fruit quality, and vegetative growth are discussed in relation to tree water status (midday stem water potential, Ψst). Minimal Ψst values reached in the treatment with the highest stress intensity were –1.71 and –1.60 MPa in 2007 and 2008 respectively. These Ψst values reached as a consequence of the water reduction in the RDI summer treatments applied in this study did not affect yield or fruit quality, allowing water savings between 16% and 23%. In conclusion, water restriction during summer, and once «June drop» has finished, favours the better use of water resources by Navelina citrus trees, achieving an increase of water use efficiency (between 14% and 27% in this case), provided that an appropriate irrigation in autumn allows for tree recovery.Se ha realizado un experimento de riego deficitario controlado (RDC) durante 2007 y 2008 en una parcela de Navelina/Cleopatra regada por goteo en Senyera (Valencia, España). Se aplicaron dos tratamientos RDC al 40 y 60% de la dosis de riego (ID) durante el periodo de crecimiento inicial del fruto (Fase II, 17/07 al 02/09). El resto del año se regaron al 110% de la ID. Estos tratamientos se compararon con un control, regado todo el año al 110% de la Dr, determinada a partir de la evapotranspiración, así como de los parámetros característicos del riego por goteo de la parcela de ensayo. Los efectos de los tratamientos sobre la producción y calidad de la cosecha, así como sobre el crecimiento vegetativo, se discuten en relación al estrés hídrico producido (potencial del tallo al mediodía solar,Ψst). Los valores mínimos de Ψst alcanzados por el tratamiento más estresado fueron de –1.71 y –1.60 MPa en 2007 y 2008 respectivamente. Estos valores de Ψst alcanzados como consecuencia de la reducción del riego en los tratamientos RDC en verano aplicados en este trabajo, no produjeron mermas en la producción ni en la calidad de la cosecha, permitiendo ahorros de agua entre el 16 y el 23%. Se concluye que la reducción del riego en verano, tras la finalización de la caída de junio, predispone a los cítricos de la variedad Navelina a aprovechar mejor los recursos hídricos, lográndose un aumento en la eficiencia en el uso del agua (entre 14 y 27% en este caso), siempre y cuando un riego adecuado permita la recuperación de los árboles en otoño

    Regulated deficit irrigation effects on yield, fruit quality and vegetative growth of ‘Navelina’ citrus trees

    No full text
    An experiment on regulated deficit irrigation (RDI) was performed during two growing seasons (2007 and 2008) in a drip-irrigated orchard of Navelina/Cleopatra in Senyera (Valencia, Spain). Two RDI treatments, where water application was reduced to 40% and 60% of the «irrigation dose» (ID), were carried out during the initial fruit enlargement phase (Stage II, 17th July to 2nd September). The rest of the year they were irrigated at 110% ID. These treatments were compared with a control, where irrigation was applied without restriction during the whole year at 110% ID. The ID was obtained from the evapotranspiration data, as well as from the characteristic variables of drip irrigation for the specific experimental orchard. The effects of the treatments on yield, fruit quality, and vegetative growth are discussed in relation to tree water status (midday stem water potential, Ψst). Minimal Ψst values reached in the treatment with the highest stress intensity were –1.71 and –1.60 MPa in 2007 and 2008 respectively. These Ψst values reached as a consequence of the water reduction in the RDI summer treatments applied in this study did not affect yield or fruit quality, allowing water savings between 16% and 23%. In conclusion, water restriction during summer, and once «June drop» has finished, favours the better use of water resources by Navelina citrus trees, achieving an increase of water use efficiency (between 14% and 27% in this case), provided that an appropriate irrigation in autumn allows for tree recovery.Se ha realizado un experimento de riego deficitario controlado (RDC) durante 2007 y 2008 en una parcela de Navelina/Cleopatra regada por goteo en Senyera (Valencia, España). Se aplicaron dos tratamientos RDC al 40 y 60% de la dosis de riego (ID) durante el periodo de crecimiento inicial del fruto (Fase II, 17/07 al 02/09). El resto del año se regaron al 110% de la ID. Estos tratamientos se compararon con un control, regado todo el año al 110% de la Dr, determinada a partir de la evapotranspiración, así como de los parámetros característicos del riego por goteo de la parcela de ensayo. Los efectos de los tratamientos sobre la producción y calidad de la cosecha, así como sobre el crecimiento vegetativo, se discuten en relación al estrés hídrico producido (potencial del tallo al mediodía solar,Ψst). Los valores mínimos de Ψst alcanzados por el tratamiento más estresado fueron de –1.71 y –1.60 MPa en 2007 y 2008 respectivamente. Estos valores de Ψst alcanzados como consecuencia de la reducción del riego en los tratamientos RDC en verano aplicados en este trabajo, no produjeron mermas en la producción ni en la calidad de la cosecha, permitiendo ahorros de agua entre el 16 y el 23%. Se concluye que la reducción del riego en verano, tras la finalización de la caída de junio, predispone a los cítricos de la variedad Navelina a aprovechar mejor los recursos hídricos, lográndose un aumento en la eficiencia en el uso del agua (entre 14 y 27% en este caso), siempre y cuando un riego adecuado permita la recuperación de los árboles en otoño

    Single-Neuron Labeling in Fixed Tissue and Targeted Volume Electron Microscopy

    No full text
    The structural complexity of nervous tissue makes it very difficult to unravel the connectivity between neural elements at different scales. Numerous methods are available to trace long-range projections at the light microscopic level, and to identify the actual synaptic connections at the electron microscopic level. However, correlating mesoscopic and nanoscopic scales in the same cell, cell population or brain region is a problematic, laborious and technically demanding task. Here we present an effective method for the 3D reconstruction of labeled subcellular structures at the ultrastructural level, after single-neuron labeling in fixed tissue. The brain is fixed by intracardial perfusion of aldehydes and thick vibratome sections (250 μm) are obtained. Single cells in these vibratome sections are intracellularly injected with horseradish peroxidase (HRP), so that the cell body and its processes can be identified. The thick sections are later flat-embedded in epoxy resin and re-sectioned into a series of thinner (7 μm) sections. The sections containing the regions of interest of the labeled cells are then imaged with automated focused ion beam milling and scanning electron microscopy (FIB-SEM), acquiring long series of high-resolution images that can be reconstructed, visualized, and analyzed in 3D. With this methodology, we can accurately select any cellular segment at the light microscopic level (e.g., proximal, intermediate or distal dendrites, collateral branches, axonal segments, etc.) and analyze its synaptic connections at the electron microscopic level, along with other ultrastructural features. Thus, this method not only facilitates the mapping of the synaptic connectivity of single-labeled neurons, but also the analysis of the surrounding neuropil. Since the labeled processes can be located at different layers or subregions, this method can also be used to obtain data on the differences in local synaptic organization that may exist at different portions of the labeled neurons.This study was funded by grants from the following entities: Spanish “Ministerio de Ciencia e Innovación” grant PGC2018- 094307-B-I00, and the Interdisciplinary Platform Cajal Blue Brain (CSIC); and the European Union’s Horizon 2020 Framework Program for Research and Innovation under specific grant agreement no. 945539 (Human Brain Project SGA3). AS has been funded by the Alexander von Humboldt Foundation

    A quantitative study on the distribution of mitochondria in the neuropil of the juvenile rat somatosensory cortex

    No full text
    Mitochondria play a key role in energy production and calcium buffering, among many other functions. They provide most of the energy required by neurons, and they are transported along axons and dendrites to the regions of higher energy demands. We have used focused ion beam milling and scanning electron microscopy (FIB/SEM) to obtain stacks of serial sections from the somatosensory cortex of the juvenile rat. We have estimated the volume fraction occupied by mitochondria and their distribution between dendritic, axonal, and nonsynaptic processes. The volume fraction of mitochondria increased from layer I (4.59%) to reach its maximum in layer IV (7.74%) and decreased to its minimum in layer VI (4.03%). On average, 44% of mitochondrial volume was located in dendrites, 15% in axons and 41% in nonsynaptic elements. Given that dendrites, axons, and nonsynaptic elements occupied 38%, 23%, and 39% of the neuropil, respectively, it can be concluded that dendrites are proportionally richer in mitochondria with respect to axons, supporting the notion that most energy consumption takes place at the postsynaptic side. We also found a positive correlation between the volume fraction of mitochondria located in neuronal processes and the density of synapses.Grants from the following entities: the Spanish Ministerio de Economía y Competitividad (Grants SAF 2015-603-P and the Cajal Blue Brain Project, Spanish partner of the Blue Brain Project initiative from EPFL); the European Union Horizon 2020 research and innovation program under Grant agreement No. 785907 (Human Brain Project, SGA2); and Centro de Investigación en Red sobre Enfermedades Neurodegenerativas (CIBERNED, CB06/05/0066, Spain). Correspondence to: [email protected]
    corecore