949 research outputs found
A Duchon framework for the sphere
In his fundamental paper (RAIRO Anal. Numer. 12 (1978) 325) Duchon presented a strategy for analysing the accuracy of surface spline interpolants to sufficiently smooth target functions. In the mid-1990s Duchon's strategy was revisited by Light and Wayne (J. Approx. Theory 92 (1992) 245) and Wendland (in: A. Le Méhauté, C. Rabut, L.L. Schumaker (Eds.), Surface Fitting and Multiresolution Methods, Vanderbilt Univ. Press, Nashville, 1997, pp. 337–344), who successfully used it to provide useful error estimates for radial basis function interpolation in Euclidean space. A relatively new and closely related area of interest is to investigate how well radial basis functions interpolate data which are restricted to the surface of a unit sphere. In this paper we present a modified version Duchon's strategy for the sphere; this is used in our follow up paper (Lp-error estimates for radial basis function interpolation on the sphere, preprint, 2002) to provide new Lp error estimates (p[1,∞]) for radial basis function interpolation on the sphere
Well-posedness of the Viscous Boussinesq System in Besov Spaces of Negative Order Near Index
This paper is concerned with well-posedness of the Boussinesq system. We
prove that the () dimensional Boussinesq system is well-psoed for
small initial data () either in
or in
if
, and , where
(, , )
is the logarithmically modified Besov space to the standard Besov space
. We also prove that this system is well-posed for small initial
data in
.Comment: 18 page
Regularity properties of distributions through sequences of functions
We give necessary and sufficient criteria for a distribution to be smooth or
uniformly H\"{o}lder continuous in terms of approximation sequences by smooth
functions; in particular, in terms of those arising as regularizations
.Comment: 10 page
Geodesic distance for right invariant Sobolev metrics of fractional order on the diffeomorphism group
We study Sobolev-type metrics of fractional order on the group
\Diff_c(M) of compactly supported diffeomorphisms of a manifold . We show
that for the important special case the geodesic distance on
\Diff_c(S^1) vanishes if and only if . For other manifolds we
obtain a partial characterization: the geodesic distance on \Diff_c(M)
vanishes for and for ,
with being a compact Riemannian manifold. On the other hand the geodesic
distance on \Diff_c(M) is positive for and
.
For we discuss the geodesic equations for these metrics. For
we obtain some well known PDEs of hydrodynamics: Burgers' equation for ,
the modified Constantin-Lax-Majda equation for and the
Camassa-Holm equation for .Comment: 16 pages. Final versio
On Bogovski\u{\i} and regularized Poincar\'e integral operators for de Rham complexes on Lipschitz domains
We study integral operators related to a regularized version of the classical
Poincar\'e path integral and the adjoint class generalizing Bogovski\u{\i}'s
integral operator, acting on differential forms in . We prove that these
operators are pseudodifferential operators of order -1. The Poincar\'e-type
operators map polynomials to polynomials and can have applications in finite
element analysis. For a domain starlike with respect to a ball, the special
support properties of the operators imply regularity for the de Rham complex
without boundary conditions (using Poincar\'e-type operators) and with full
Dirichlet boundary conditions (using Bogovski\u{\i}-type operators). For
bounded Lipschitz domains, the same regularity results hold, and in addition we
show that the cohomology spaces can always be represented by
functions.Comment: 23 page
On the Fourier transform of the characteristic functions of domains with -smooth boundary
We consider domains with -smooth boundary and
study the following question: when the Fourier transform of the
characteristic function belongs to ?Comment: added two references; added footnotes on pages 6 and 1
Stable Determination of the Electromagnetic Coefficients by Boundary Measurements
The goal of this paper is to prove a stable determination of the coefficients
for the time-harmonic Maxwell equations, in a Lipschitz domain, by boundary
measurements
On the Usefulness of Modulation Spaces in Deformation Quantization
We discuss the relevance to deformation quantization of Feichtinger's
modulation spaces, especially of the weighted Sjoestrand classes. These
function spaces are good classes of symbols of pseudo-differential operators
(observables). They have a widespread use in time-frequency analysis and
related topics, but are not very well-known in physics. It turns out that they
are particularly well adapted to the study of the Moyal star-product and of the
star-exponential.Comment: Submitte
On the Lieb-Thirring constants L_gamma,1 for gamma geq 1/2
Let denote the negative eigenvalues of the one-dimensional
Schr\"odinger operator on . We prove the inequality \sum_i|E_i(H)|^\gamma\leq L_{\gamma,1}\int_{\Bbb
R} V^{\gamma+1/2}(x)dx, (1) for the "limit" case This will imply
improved estimates for the best constants in (1), as
$1/2<\gamma<3/2.Comment: AMS-LATEX, 15 page
- …