328 research outputs found

    A separate least squares algorithm for efficient arithmetic coding in lossless image compression

    Get PDF
    The overall performance of discrete wavelet transforms for losssless image compression may be further improved by properly designing efficient entropy coders. In this paper a novel technique is proposed for the implementation of context-based adaptive arithmetic entropy coding. It is based on the prediction of the value of the current transform coefficient. The proposed algorithm employs a weighted least squares method applied separately for the HH, HL and LH bands of each level of the multiresolution structure, in order to achieve appropriate context selection for arithmetic coding. Experimental results illustrate and evaluate the performance of the proposed technique for lossless image compression

    On the self-pinning character of synchro-Shockley dislocations in a Laves phase during strain rate cyclical compressions

    Get PDF
    Strain rate cyclical tests in compression, between 1350 and 1500 degrees C, have been employed to study the self-pinning character of thermally activated synchro-Shockley dislocations in the C15 Cr2Nb Laves phase. An average minimum effective (pinning) stress was calculated to be necessary for their propagation. The dislocation velocity cannot respond instantly to the strain rate changes and requires variations in the mobile dislocation density because the synchro-Shockleys can be pinned if the cooperating motion of their two Shockley components is hindered. (c) 2008 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    Stability of a frictional material layer resting on a viscous half-space

    Full text link
    a geological two-layer system composed of a frictional material layer of finite thickness, called the overburden, resting on a viscous half-space of lower density is investigated. The salient features of this study are a realistic description of the stiffness of the overburden and its state of (in situ) prestress. and the use of the viscosity of the substratum to define a characteristic time for the stability analysis. A general variational formulation for the linearized, non-selfadjoint stability problem is presented, followed by asymptotic analyses for the cases of large and small perturbation wavelengths and by an analytical solution in the absence of gravity. Results obtained by a finite-element method are compared with the analytical and asymptotic predictions; they permit the detection of various modes of instability: interface and beam-type modes in the compressive range of deformation, and neck-type modes in the tensile range. It is found that the system's stability is not only governed by geometry and density contrast, as expected from the conclusions of earlier studies on viscous and viscoelastic models, but is also sensitive to the state of in situ stress. A complete parametric study reveals that the overburden material cohesion and workhardening properties have more influence on stability than the friction angle. Furthermore, it is found that critical stresses at neutral stability predicted by deformation theory, which is an appropriate model for studying the initiation of faulting in rocks, are smaller in magnitude than those obtained by the corresponding How theory with a smooth yield surface. Implications of this work for the interpretation of various laboratory analogue model experiments pertaining to geological two-layer systems are also discussed.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31867/1/0000817.pd

    Stability of a frictional, cohesive layer on a viscous substratum: validity of asymptotic solution and influence of material properties

    Get PDF
    This study deals with the stability of a stratified structure composed of a cohesive and frictional overburden, a viscous substratum, and a rigid basement. That structure should be seen as a prototype for various salt tectonics and lithospheric plates stability analyses. The destabilizing factors are the density contrast, the tectonic compressive stress, and the possible erosion and deposition at the top surface. The overburden stiffness, a nonlinear function of in situ stress, has a stabilizing role. Two solutions are extracted from the variational formulation of the stability problem previously proposed [Leroy and Triantafyllidis, 1996]: the first is analytical and is obtained by disregarding gravity, and the second is numerical and is based on the finite element method. The latter is used to assess the validity of the previously presented asymptotic solution. It is shown that the asymptotic solution is accurate even for values of the small parameter, defined as the perturbation wavenumber times the overburden thickness, as large as 0.4. Furthermore, the possibility for the cohesive material in the overburden to accommodate part of the deformation by slip along a population of small pervasive faults is accounted for by the introduction of a deformation theory of plasticity. Stability predictions based on this theory indicate that structural modes, such as folding, and localized faulting modes are triggered for similar stress magnitudes. The parametric study presented includes the previously undetected influences of the stress gradient with depth and of the work hardening properties of the competent overburden. The role of erosion and deposition in destabilizing shallow overburdens, regardless of the magnitude of the tectonic stress, is also established. The stability predictions are then applied to a folded section through the Campos basin, offshore Brazil, revealing that the deformation theory of plasticity is necessary to explain the buckling that occurred during the Albian

    Membrane Spin Up in a Normal Gravity Field: Experiments and Simulations

    Get PDF
    Finite element simulations and experimental observations of the spin up in vacuum of a thin membrane loaded by gravity are presented. The numerical techniques take into account the run time of each simulation and energy convergence; it is shown that accurate results can be obtained quite quickly in a rotating reference frame, and that including stiffness-proportional material damping helps convergence of the integration. It is also found that a very fine finite element mesh around the hub of the membrane is required to obtain consistent results. The experimental setup allows spinning of the membrane in a vacuum box; a measurement technique that uses stereo Digital Image Correlation is presented. A comparison between experiments and simulations using characteristic parameters of the shape of a membrane, i.e. the number of rotational symmetric waves, the average deflection, and the elastic bending strain energy of the membrane, shows good agreement between experiments and simulations

    The mechanical properties and the deformation microstructures of the C15 Laves phase Cr2Nb at high temperatures

    Get PDF
    Compression tests between 1250 and 1550 degrees C and 10(-5) and 5 x 10(-3) s(-1) and transmission electron microscopy have been employed to investigate the high temperature mechanical properties and the deformation mechanisms of the C15 Cr2Nb Laves phase. The stress-peaks in the compression curves during yielding were explained using a mechanism similar to strain aging combined with a low initial density of mobile dislocations. The primary deformation mechanism is slip by extended dislocations with Burgers vector 1/2 <110 >, whereas twinning is more frequent at 10(-4) s(-1). Schmid factor analysis indicated that twinning is more probable in grains oriented so as to have two co-planar twinning systems with high and comparable resolved shear stresses. Twinning produced very anisotropic microstructures. This may be due to synchroshear: a self-pinning mechanism which requires co-operative motion of zonal dislocations. (c) 2006 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved

    On the commutability of homogenization and linearization in finite elasticity

    Full text link
    We study non-convex elastic energy functionals associated to (spatially) periodic, frame indifferent energy densities with a single non-degenerate energy well at SO(n). Under the assumption that the energy density admits a quadratic Taylor expansion at identity, we prove that the Gamma-limits associated to homogenization and linearization commute. Moreover, we show that the homogenized energy density, which is determined by a multi-cell homogenization formula, has a quadratic Taylor expansion with a quadratic term that is given by the homogenization of the quadratic term associated to the linearization of the initial energy density

    Onset of entanglement

    Full text link
    We have developed a theory of polymer entanglement using an extended Cahn-Hilliard functional, with two extra terms. One is a nonlocal attractive term, operating over mesoscales, which is interpreted as giving rise to entanglement, and the other a local repulsive term indicative of excluded volume interactions. We show how such a functional can be derived using notions from gauge theory. We go beyond the Gaussian approximation, to the one-loop level, to show that the system exhibits a crossover to a state of entanglement as the average chain length between points of entanglement decreases. This crossover is marked by critical slowing down, as the effective diffusion constant goes to zero. We have also computed the tensile modulus of the system, and we find a corresponding crossover to a regime of high modulus.Comment: 18 pages, with 4 figure
    • …
    corecore