1,004 research outputs found

    Gravity changes due to overpressure sources in 3D heterogeneous media: application to Campi Flegrei caldera, Italy

    Get PDF
    Employing 3D finite element method, we develop an algorithm to calculate gravity changes due to pressurized sources of any shape in elastic and inelastic heterogeneous media. We consider different source models, such as sphere, spheroid and sill, dilating in elastic media (homogeneous and heterogeneous) and in elasto-plastic media. The models are oriented to reproduce the gravity changes and the surface deformation observed at Campi Flegrei caldera (Italy), during the 1982-84 unrest episode. The source shape and the characteristics of the medium have great influence in the calculated gravity changes, leading to very different values for the source densities. Indeed, the gravity residual strongly depends upon the shape of the source. Non negligible contributions also come from density and rigidity heterogeneities within the medium. Furthermore, if the caldera is elasto-plastic, the resulting gravity changes exhibit a pattern similar to that provided by a low effective rigidity. Even if the variation of the source volumes is quite similar for most of the models considered, the density inferred for the source ranges from ∌ 400 kg/m3 (supercritical water) to ∌ 3300 kg/m3 (higher than trachytic basalts), with drastically different implications for risk assessment

    Gravity changes due to overpressure sources in 3D heterogeneous media: application to Campi Flegrei caldera, Italy

    Get PDF
    Employing a 3D finite element method, we develop an algorithm to calculate gravity changes due to pressurized sources of any shape in elastic and inelastic heterogeneous media. We consider different source models, such as sphere, spheroid and sill, dilating in elastic media (homogeneous and heterogeneous) and in elasto-plastic media. The models are oriented to reproduce the gravity changes and the surface deformation observed at Campi Flegrei caldera (Italy), during the 1982-1984 unrest episode. The source shape and the characteristics of the medium have great influence on the calculated gravity changes, leading to very different values for the source densities. Indeed, the gravity residual strongly depends upon the shape of the source. Non negligible contributions also come from density and rigidity heterogeneities within the medium. Furthermore, if the caldera is elasto- plastic, the resulting gravity changes exhibit a pattern similar to that provided by a low effective rigidity. Even if the variation of the source volumes is quite similar for most of the models considered, the density inferred for the source ranges from ∌400 kg/m3 (super critical water) to ∌3300 kg/m3 (higher than trachytic basalts), with drastically different implications for risk assessment

    EFFETTO DELLA SOLLECITAZIONE MECCANICA A FLESSIONE SUL COMPORTAMENTO A CORROSIONE DI LEGHE DI Al STRUTTURALI

    Get PDF
    The present work reports on the effect of constant bending load on the electrochemical behavior of structural aluminum alloys AA 2024-T3 (Al-Cu-Mg) and AA 7075-T6 (Al-Zn-Mg-Cu). The single cycle anodic polarization curves in 0.6 M NaCl (pH 6.5) were carried out using four-point bent beam specimens (4PBB). Lower propensity to localized corrosion has been indicated for compressive stresses. The effect of tensile stresses on the electrochemical response is more complex and depends on the alloy nature

    Finite element inversion of DInSAR data from the Mw 6.3 L’Aquila earthquake, 2009 (Italy)

    Get PDF
    Fault slip distribution is usually retrieved from geodetic data assuming that the local crust is an elastic, homogeneous and isotropic half‐space. In the last decades spatially dense geodetic data (e.g., DInSAR maps) have highlighted complex patterns of coseismic deformation that require new modeling tools, such as numerical methods, able to represent rheological and geometrical complexities of the Earth’s crust. In this work, we develop a procedure to perform inversion of geodetic data based on the finite element method, accounting for a more realistic description of the local crust. The method is applied to the 2009 L’Aquila earthquake (Mw 6.3), using DInSAR images of the coseismic displacement. Results highlight the non‐negligible influence of the medium structure: homogeneous and heterogeneous models show discrepancies up to 20% in the fault slip distribution values. Furthermore, in the heterogeneous models a new area of slip appears above the hypocenter. We also perform a resolution study, showing that the information about fault slip distributions retrieved from geodetic data should be considered as averaged on surrounding patches

    Numerical inversion of deformation caused by pressure sources: application to Mount Etna (Italy)

    Get PDF
    The interpretation of geodetic data in volcanic areas is usually based on analytical deformation models. Although numerical Finite Element modeling allows realistic features such as topography and crustal heterogeneities to be included, the technique is not computationally convenient for solving inverse problems using classical methods. In this paper we develop a general tool to perform inversions of geodetic data by means of 3D FE models. The forward model is a library of numerical displacement solutions, where each entry of the library is the surface displacement due to a single stress component applied to an element of the grid. The final solution is a weighted combination of the six stress components applied to a single element-source. The precomputed forward models are implemented in a global search algorithm, followed by an appraisal of the sampled solutions. After providing extended testing, we apply the method to model the 1993-97 inflation phase at Mt. Etna, documented by GPS and EDM measurements. We consider four different forward libraries, computed in models characterized by homogeneous/ heterogeneous medium and flat/topographic free surface. Our results suggest that the elastic heterogeneities of the medium can significantly alter the position of the inferred source, while the topography has minor effect

    Ellagic Acid as Green Corrosion Inhibitor: a Necessary Validation

    Get PDF
    Corrosion of metals is an unavoidable but controllable process. Among techniques developed to slow down or prevent metal deterioration the addition of small amount of inhibitors directly in the corrosive environment is a quite common strategy. In particular, among organic compounds effectively used as adsorption inhibitors (thanks to N, O and/or S atoms that act as anchoring groups for metal surface) only a few percentage belongs to the so called \u201cgreen inhibitor\u201d class. In this field most of the studies employ plant extracts being rich in phytochemical constituents considered to be potential eco-friendly corrosion inhibitors. However, the often extraordinary complexity of crude extracts makes difficult the rationalization of the inhibition mechanism. So, from a purely academic point of view, the study of pure compounds is often encouraged. Among potential green inhibitors our attention has been focused on ellagic acid (EA) that can be obtained by hydrolysis of ellagitannin contained in peels of pomegranate. Ellagic acid is a polyphenol having four phenolic and two lactone groups that should act like two and one couples of equivalent sites, respectively, due to the C2h molecular symmetry. Up to know the corrosion inhibition properties of EA was only marginally studied in literature, both theoretically and experimentally. However some reported results need to be validated because of discrepancies concerning some fundamental chemical physical features of the target acid, like i) solubility in pure water (9 mg/dm3 versus 1.2 g/dm3) and ii) pKa values for the two acid dissociation processes. For this purposes, using UV-Vis absorption spectroscopy, a mainly-aqueous medium was selected to assure homogeneity of the EA-based solution; after that the corrosion inhibition properties of ellagic acid toward mild steel was studied by weight loss measurements (according to ASTM G1 standard practice) and by electrochemical tests. Preliminary results performed in 1% v/v MeOH/H2O mixture with HCl 0.05 M point to potentially interesting inhibition effect even working with 1.0 1910\u20135 M EA (i.e., 3 mg/dm3)

    Geometrical and physical properties of the 1982-84 deformation source at Campi Flegrei - Italy

    Get PDF
    Deformation of the ground surface in volcanic areas is generally recognized as a reliable indicator of unrest, possibly resulting from the intrusion of fresh magma within the shallow rock layers. The intrusion process is usually represented by a deformation source such as an ellipsoidal pressurized cavity, embedded within a homogeneous and elastic half-space. Similar source models allow inferring the depth, the location and the (incremental) volume of the intrusion, which are very important parameters for volcanic risk implications. However, assuming a homogeneous and elastic rheology and, assigning a priori the shape and the mechanism of the source (within a very restricted “library” of available solutions) may bias considerably the inference of source parameters. In complete generality, any point source deformation, including overpressure sources, may be described in terms of a suitable moment tensor, while the assumption of an overpressure source strongly restricts the variety of allowable moment tensors. In particular, by assuming a pressurized cavity, we rule out the possibility that either shear failure may precede magma emplacement (seismically induced intrusion) or may accompany it (mixed tensile and shear mode fracture). Another possibility is that a pre-existent weakness plane may be chosen by the ascending magma (fracture toughness heterogeneity). We perform joint inversion of levelling and EDM data (part of latter are unpublished), collected during the 1982-84 unrest at Campi Flegrei caldera: a 43% misfit reduction is obtained for a general moment source if the elastic heterogeneities computed from seismic tomography are accouted for. The inferred source is at 5.2 km depth but cannot be interpreted as a simple pressurized cavity. Moreover, if mass conservation is accounted for, magma emplaced within a shallow source must come from a (generally deeper) reservoir, which is usually assumed to be deep enough to be simply neglected. At Campi Flegrei, seismic tomography indicates that the “deep” magma source is rather shallow (at 7-8 km depth), so that its presence should be included in any thorough attempt to source modeling. Taking into account a deflating source at 7.5 km depth (represented either as a horizontal sill or as an isotropic cavity) and an inflating moment source, the fit of both levelling and EDM data improves further (misfit reduction 80%), but still the best fitting moment source (at 5.5 km depth) falls outside the range of pressurized ellipsoidal cavities. The shallow moment source may be decomposed in a tensile and a shear dislocation. No clue is obtained that the shear and the tensile mechanisms should be located in different positions. Our favourite interpretation is in terms of a crack opening in mixed tensile and shear mode, as would be provided by fluid magma unwelding pre-stressed solid rock. Although this decomposition of the source is not unique, the proposed solution is physically motivated by the minimum overpressure requirement. An important implication of this new interpretation is that the magma emplaced in the shallow moment source during the 1982-84 unrest was not added to already resident magma at the same position

    A new interpretation of the 1982-84 unrest episode at Campi Flegrei caldera (Italy) by numerical inversion

    Get PDF
    The 1982-84 unrest episode at Campi Flegrei was characterized by huge deformation (about 1.8 m uplift) located inside the caldera and significant gravity variations correlated with the elevation changes (about -213 ÎŒ\muGal/m). Due to the bell shape of the uplift, the source is usually interpreted to have a fixed spherical shape. In the present study, we combine simple point source mechanisms (dipoles and double couples) to represent arbitrary sources such as sphere, ellipsoid or sill. The models are realized by Finite Element and the medium may be characterized by elastic heterogeneities. We study the deformation detected by leveling and EDM techniques by coupling the FE forward models with an inversion procedure. The potential point sources are contained in a volume of 8×\times8×\times8 km3^3 located beneath Pozzuoli, the site of maximum displacement. We calculate the displacement field at each data point for each basic mechanism and we compare the result with the observed value. From the inversion of geodetic data we retrieve the best-fitting source parameters, without fixing the shape a priori. The best-fitting source is located beneath Pozzuoli at about 4.8 km b.s.l. and undergoes to horizontal compression and vertical dilatation

    On deformation sources in volcanic areas: Modeling the Campi Flegrei (Italy) 1982–84 unrest

    Get PDF
    Deformation sources in volcanic areas are generally modeled in terms of pressurized tri-axial ellipsoids or pressurized cracks with simple geometrical shapes, embedded in a homogeneous half-space. However, the assumption of a particular source mechanism and the neglect of medium heterogeneities bias significantly the estimate of source parameters. A more general approach describes the deformation source in terms of a suitable moment tensor. Ratios between moment tensor eigenvalues are shown to provide a strong diagnostic tool for the physical interpretation of the deformation source and medium heterogeneities may be accounted for through 3D finite element computations. Leveling and EDM data, collected during the 1982–84 unrest episode at Campi Flegrei (Italy), are employed to retrieve the complete moment tensor according to a Bayesian inversion procedure, considering the heterogeneous elastic structure of the volcanic area. Best fitting moment tensors are found to be incompatible with any pressurized ellipsoid or crack. Taking into account the deflation of a deeper magma reservoir, which accompanies the inflation of a shallower source, data fit improves considerably but the retrieved moment tensor of the shallow source is found to be incompatible with pressurized ellipsoids, still. Looking for alternative physical models of the dislocation source, we find that the best fit moment tensor can be best interpreted in terms of a mixed mode (shear and tensile) dislocation at 5.5 km depth, striking EW and dipping by ~25°–30° to the North. Gravity changes are found to be compatible with the intrusion of ~60–70·10^6 m^3 of volatile rich magma with density ~2400 kg/m^3

    Crack Growth Studies in Railway Axles under Corrosion Fatigue: Full-scale Experiments and Model Validation

    Get PDF
    Abstract Crack initiation and growth in full scale railway axle in A1T mild steel have been studied, under three points rotating bending loading conditions and artificial rainwater as corrosive environment. A surface plastic replication technique has been used along with optical microscopy and Scanning Electron Microscopy to monitor the environment assisted fatigue at various stages.A modified Murtaza and Akid empirical model has been employed to predict the corrosion fatigue crack growth rates and a reasonable agreement has been found between experimental and calculated lifetime
    • 

    corecore