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Abstract

Employing 3D finite element method, we develop an algorithm to calculate gravity changes

due to pressurized sources of any shape in elastic and inelastic heterogeneous media. We

consider different source models, such as sphere, spheroid and sill, dilating in elastic media

(homogeneous and heterogeneous) and in elasto-plastic media. The models are oriented to

reproduce the gravity changes and the surface deformation observed at Campi Flegrei caldera

(Italy), during the 1982-84 unrest episode. The source shape and the characteristics of the

medium have great influence in the calculated gravity changes, leading to very different values

for the source densities. Indeed, the gravity residual strongly depends upon the shape of the

source. Non negligible contributions also come from density and rigidity heterogeneities within

the medium. Furthermore, if the caldera is elasto-plastic, the resulting gravity changes exhibit

a pattern similar to that provided by a low effective rigidity. Even if the variation of the
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source volumes is quite similar for most of the models considered, the density inferred for the

source ranges from ∼ 400 kg/m3 (supercritical water) to ∼ 3300 kg/m3 (higher than trachytic

basalts), with drastically different implications for risk assessment.

Key words: Campi Flegrei, deformation, gravity, finite element method, heterogeneous

medium

1 Introduction

Volcanic activity produces deformation and gravity changes that may be used as pre-

cursors of future eruptions. Monitoring of active areas, together with interpretation

of these changes, may reveal the physics and characteristics of the magma reservoir.

Indeed, the detection of ground deformation allows to constrain location and type of

deep reservoirs, while gravity monitoring is recognized as a valuable tool for mapping

subsurface density distributions. Both of them contribute to quantify the change in

subsurface mass. Several models have been developed in order to interpret geodetic and

gravity signals in active volcanic areas. Walsh and Rice (1979) developed a method to

calculate the gravity changes as due to subsurface mass redistribution with respect to

the gravimeters at surface. The calculation is suitable for any dislocation source in the

half-space; however the stress change in a dislocation-free half-space must be known.

Bonafede and Mazzanti (1998) suggested the separation of density variations, affecting

the computation of gravity changes, into 3 different contributions: the first contribution

comes from the input of new mass from remote distance, the remaining two from the lin-

earized continuity equation of the material already present in the region. Fernandez and

Rundle (1994) developed a method to compute gravity variations due to point magma

intrusion in a horizontally layered elastic-gravitational media. The solutions were ex-

tended and generalized to point-sources in multi-layered viscoelastic-gravitational media
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(Fernandez et al., 2001). A comprehensive tool for evaluating deformation and gravity

changes due to dislocation in horizontally layered viscoelastic media was also provided

recently by Wang et al. (2006). The approaches described above are able to simulate

only partially the complex geology of volcanic regions, since they model point-sources

in horizontally layered media. Furthermore, biases in estimate of source density may

arise from oversimplified models. Trasatti et al. (2005) developed finite element de-

formation models taking into account the structural and rheological characteristics of

Campi Flegrei. The introduction of rigidity layering and plastic rheology in the local

crust causes a shrinking of the deformation shape and enhances the maximum values

within the caldera. This behavior allows to estimate a source depth of 5 km (plastic

medium) instead of 3 km (elastic medium), adopting the same overpressure and in ac-

cordance with informations from groundwater studies and petrological data. Recently,

Currenti et al. (2007) calculated the gravity changes in FE models characterized by an

ellipsoidal source expanding in a heterogeneous medium with real topography of Mt.

Etna. They found that gravity estimates may be biased in terms of mass gain/loss if

medium complexities are neglected.

In the present paper we attempt to model both the deformation and the gravity. We

develop a technique to calculate gravity variations due to deep pressurized sources in

heterogeneous media. The method consists in two separated steps: (i) the displacement

and strain fields due to the source are computed by FE modelling; (ii) the results are

employed in a procedure to integrate numerically the gravity variations from the dis-

placements and strain fields. The great advantage of this technique is that the FE models

may include several complexities: arbitrary source shape, lateral heterogeneities of the

medium, non linear rheological properties and so on. We reproduce known solutions

to test the method and then we furnish new calculations of models which cannot be

solved analytically. We consider spherical and non spherical (sill and spheroid) sources;
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furthermore, different medium properties are included, such as density contrasts, elastic

inhomogeneities and rheological variations. The models are discussed as a preliminary

approach to reproduce the gravity changes observed at Campi Flegrei during the 1982-

84 unrest episode.

2 The Campi Flegrei caldera

The Campi Flegrei caldera, hereafter CF, near Naples (Italy), is a complex volcanic

system with several, mostly monogenic, explosive vents (Fig. 1) in a densely populated

area of some 80 km2. The CF is characterized by the outer caldera rim, about 12 km

in diameter (open triangles in Fig. 1) and the inner caldera of 6-8 km in diameter

(full triangles). Slow and remarkable ground movements are typical of this area, as

recorded since roman times. In 1970-1972 and 1982-1984, a cumulative uplift of about

3.5 m was observed, followed by changes in the shallow hydrothermal system (Chiodini

et al., 2003) and an increased rate of shallow seismicity (see De Natale et al., 1991,

for an overview). Following January 1985, the ground began to subside at a much

slower rate than during the uplift. The deformation pattern, both during the uplift

and the subsidence, exhibits a dominant axial symmetry, concentrated in the inner

caldera, with the maximum uplift located at the caldera center (the city of Pozzuoli).

Gravity measurements at CF have been carried out since 1981 and the largest gravity

variations are also observed at Pozzuoli. The gravity changes are well correlated with

the elevations changes (stars) as reported in Fig. 2a both during the 1982-84 uplift and

the 1985-91 deflation phase. In particular, during the unrest phase, at Serapeo (a roman

market in the center of Pozzuoli) the gravity change normalized to the uplift was -216±7

µGal/m, in good agreement with the average of all the stations -213±6 µGal/m. This

value is comparable to those measured during inflation episodes at Long Valley and
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Rabaul calderas. However, during the deflation phase, a ratio between gravity change

and uplift of -224±24 µGal/m (similar to that computed during uplift) was observed

only at Serapeo (the gravity benchmark closest to the point of maximum uplift), while

more scattered ratios were inferred at other stations (e.g. Solfatara and La Pietra),

possibly due to local effects (Berrino, 1994). The direct measurement of the free-air

vertical gradient at CF is γ = -290±5 µGal/m (Berrino et al., 1984), about 20 µGal/m

smaller (in absolute value) than the reference value (Fig. 2b). The residual gravity ∆gR

(the difference between the observed ∆g and the free-air gravity ∆gFA) increased with

the uplift by 75±12 µGal/m during 1982-84 (Fig. 2c).

The 1982-84 crises was interpreted as due to increase of pressure of a deep magma

chamber, while geochemical evidences suggested thermodynamic disturbances of shal-

low aquifers as a response to increased heat flow from below (Bullettin Volcanologique,

1984). The bell shape of the vertical surface displacement suggests to model the data

by means of Mogi isotropic pressure sources. Gottsmann et al. (2006) presented inver-

sions of deformation data adopting different source geometries: point-source, sill and

spheroidal cavity. All the sources result to be located at about 3 km below sea level,

and they suggested that the spheroidal source may depict an envelope around a hybrid

of both magmatic and hydrothermal sources. Battaglia et al. (2006) performed joint

inversions of gravity and deformation data, founding that a sill-like source is preferred

to interpret the inflation phase, while a shallower spheroid source is more suitable for

the deflation phase. The works mentioned above assume the medium to be elastic and

homogeneous. These approximations only provide limited insights into subsurface dy-

namics at areas such as CF, where intense faulting and inelastic deformations are likely

to take place.
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3 Method of gravity calculation by FE

3.1 Gravity contributions

In general, the total gravity change observed at a benchmark can be separated into the

term depending on the elevation change (removed by free-air correction) and the term

due to mass redistribution:

∆g = ∆gFA + ∆gR (1)

where ∆gFA = γuz (γ is the free-air gradient and uz is the vertical displacement of the

benchmark). As suggested by many authors, the data is corrected using the measured

free-air vertical gradient (e.g. Berrino, 1994). The residual gravity change is given by:

∆gR = G
∫

V

∆ρ
cos θ

r2
dV (2)

where G is the gravitational constant, V is the volume over which the density variations

∆ρ do not vanish, r is the vector between dV and the observation point and θ is the

angle between r and the vertical (Fig. 3). According to Sasai (1986) and Bonafede and

Mazzanti (1998), ∆ρ in eq. (2) accounts for three contributions:

∆ρ = δρs − ρǫkk − u · ∇ρ (3)

where δρs is the density change related to the introduction of new mass from remote

distance, ρ is the material density in the reference configuration, ǫij is the strain tensor

and u is the displacement field. The first term accounts for the new mass intruded;

the second term is the relative density change arising from the compressibility of the

medium; the third one is due to density variations within the medium. Considering the
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three density changes indicated in eq. (3), ∆gR can be written as (Fig. 3):

∆gR = ∆gS + ∆gM with ∆gM = ∆gV + ∆gL (4)

where ∆gS depends on δρs (vanishing for a massless source) and ∆gM is the contribution

due to deformation of the medium surrounding the source. The term ∆gV is expressed

by

∆gV = −G
∫

V

ρǫkk

cos θ

r2
dV (5)

and depends on the finite compressibility of rocks; it vanishes if the medium is incom-

pressible. The ∆gL term depends on u · ∇ρ and it accounts for the Bouguer correction

(expressing the contribution of the lifted mass above the free surface) and the source

inflation/deflation (from the displacement of source boundaries). Furthermore, it ac-

counts for the displacement of volumes with different density if the medium is not

homogeneous. If ρ varies continuously, it is given by

∆gL = −G
∫

V

u · ∇ρ
cos θ

r2
dV (6)

If ρ is discontinuous across a surface S within V , the exceeding mass depends on the

displacement of the boundary between densities ρin and ρout as (ρout − ρin)u · dS. Note

that the scalar product between the orientation of the density interface dS and its

displacement u accounts for contributions of any orientation of the surface. Therefore,

the contribution due to the density discontinuities can be expressed as:

∆gL = G(ρout − ρin)
∫

S

cos θ

r2
u · dS (7)

where S is the surface over which the density changes. It is important to note that ∆gL

may include the contribution of the new mass within the source, if the density gradient
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is chosen properly. However, we separate the effect of the displacement of the source

boundary (within ∆gL term) from the effect of the new mass (∆gS) because the density

contrast between inside/outside the source is unknown, being one of the main target of

gravity modelling.

3.2 Numerical integration of gravity within FE models

The subdivision in single contributions of eq. (4) is a suitable method to compute

gravity changes from FE models of deformation. We consider massless cavities since

the source term ∆gS is treated separately in sec. 5. The gravity changes are calculated

in two separate steps:

(1) FE calculation of displacement u and strain ǫij fields in the medium, due to the

source inflation;

(2) computation of gravity terms ∆gL and ∆gV from displacements and strains ob-

tained at (1).

Since the gravity terms ∆gL and ∆gV are integrals over the total volume, they are

computed as a sum of contributions within each finite element:

∫

V

f(x, y, z)dV =
N

∑

i=1

∫

Vi

f(x, y, z)dV (8)

where N is the total number of elements, Vi is the volume of the i-th element of the

grid and f is a generic integrand function. The gravity term ∆gV expressed in eq. (5)

can be easily evaluated within the FE domain as

∆gV = −G
N

∑

i=1

ρi

∫

Vi

ǫkk

cos θ

r2
dV (9)

8



where ρi is the density of the i-th element. The term ∆gL due to the density variation

is complicated by the integration over the faces of elements. Indeed, for each face of the

i-th brick element we must consider the density variations within the adjacent element.

The term ∆gL from eq. (7) is expressed by:

∆gL = G
N

∑

i=1

6
∑

j=1

(ρout − ρin)
∫

Sij

cos θ

r2
u · dS (10)

where the surface integral is performed over each j-th face of the i-th element Sij and ρin

is the density of the element considered, while ρout is the density of the adjacent element

sharing the face Sij. Note that this contribution must be evaluated only once. For the

elements forming the free surface, this contribution is the Bouguer correction (since the

faces lying on the free surface have confining density equal to 0). If a density contrast is

present within two or more elements of the medium, ∆gL accounts for this contribution.

The great advantage of this integration is that non planar interfaces between layers can

be considered. Each element may have arbitrarily shape and may be characterized by

different density, elastic parameters or rheology independently from the rest of the

model.

The integrals over single elements are evaluated numerically using the Gauss quadrature

formula. We give a brief overview of this technique:

(1) the Gauss integration is computed by mapping each arbitrarily distorted brick ele-

ment, the (x, y, z) space, to a trilinear hexahedral element of side 2l, the (x′, y′, z′)

space. The transformation applies to local cells only (Fig. 4a). The volume inte-

gration for an element becomes:

∫

V

f(x, y, z)dV =

l
∫

−l

l
∫

−l

l
∫

−l

f [x(x′, y′, z′), y(x′, y′, z′), z(x′, y′, z′)]J(x′, y′, z′)dV ′(11)

where J is the Jacobian determinant.
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(2) The volume integral is evaluated as the sum of the integrand function calculated

at Gauss points. We adopt the two-points integration (for each dimension), which

requires to approximate the integrand function at 8 Gauss points: (x′
G, y′

G, z′G) =

(± l√
3
,± l√

3
,± l√

3
). The volume integral becomes the sum of the values:

l
∫

−l

l
∫

−l

l
∫

−l

f(x′, y′, z′)dV ′ =
8

∑

1

f(x′
G, y′

G, z′G) (12)

Since the Gauss integration is the technique adopted by FE to calculate many derived

fields such as strain and stress, these values are directly available from our code (MARC ,

1994, version 2005) at Gauss points without any further approximations. The term ∆gV

in eq. (9) can be computed from eq. (12). However, computation of ∆gL in eq. (10)

involves surface integrals over each element face. Following the development outlined

in Greenberg (1978), each face is locally transformed in space (x′, y′, z′), defining the

vectors ds1 and ds2 tangent to the plane considered. In the example shown in Fig. 4b,

the face 4-3-7-8 is mapped into the x′-constant plane. The vector ds1 is defined to be

along y′-constant curve and ds2 is along z′-constant curve. The elemental area vector dS,

denoted by the shaded parallelogram, can be computed as the vector product between

ds2 and ds1 (positive pointing out of the cell). The surface integral becomes

∫

S

f u · dS =
∫

S

f u · (ds2 × ds1) (13)

and it is computed by applying the two-points Gauss rule in two-dimensions. Indeed,

4 Gauss points are determined over the mapped plane, e.g. (± l√
3
,± l√

3
, l), and the

integrand function is approximated at these points following the procedure outlined

above.
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4 Cases of study

We develop a FE model characterized by about 75000 8-nodes brick elements, extending

160 × 160 × 80 km3 (Fig. 5). The domain is large enough to avoid bias from boundaries

over which displacement and stress fields are imposed to vanish. Furthermore, the bot-

tom boundary is kept fixed. The grid is characterized by the presence of a flat interface

at 3 km depth which may be used to represent a shallow layer, and a cylindrical bound-

ary of radius 3 km and depth 3 km lying at the center of the model, to approximate

the CF caldera. The element size is about 350 m side in the central part of the grid,

while it increases with distance up to 10 km close to the domain boundaries.

We show examples of gravity computations for pressurized sources of various shapes in

homogeneous/inhomogeneous media. In all the cases shown in this section, the sources

are considered empty so that only ∆gM is computed. A brief outline of the main char-

acteristics of the models are reported in table 1. Unless changes due to specific model

configurations, the medium is considered as homogeneous, elastic and isotropic with

rigidity µ0 = 1 GPa and Poisson ratio ν = 0.25. All the sources are placed at 5 km

depth, at the center of the model, co-axial with the caldera and undergo to overpressure

∆P = 50 MPa. When the density is homogeneous, its value is ρ0 = 2500 kg/m3. The

models named MOGI-n are characterized by a spherical source of radius a = 1 km; in

particular the case with homogeneous and elastic medium is MOGI-1. Density contrasts

are considered in models MOGI-2 and MOGI-3, characterized by a density equal to ρ1

= 1800 kg/m3 within the shallow layer and the caldera (respectively); the density of

the remaining medium is ρ0. In model MOGI-4 the caldera has heterogeneous rigidity

with respect to the remaining medium µ1 = 0.1µ0, while the density ρ0 is constant

anywhere. Model MOGI-5 contains both the last characteristics: the caldera has het-

erogeneous rigidity µ1 and density ρ1, while the rest of the medium has rigidity µ0 and
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density ρ0. We consider also two inelastic models, assuming a plastic rheology of the

medium to describe the highly fractured rocks of the CF area. The medium behaves

plastically when the maximum shear stress is greater than a specified yield stress. The

plastic rheology is only treatable by means of numerical methods, and easily imple-

mentable in FE models. In model MOGI-6 the whole medium behaves plastically with

yield stress σy = 30 MPa, while MOGI-7 is characterized by plastic caldera (σy = 0.5

MPa) and remaining elastic medium, to evidence the highly deformable inner caldera.

Two further models are considered, with different shape of the source: spheroid and

sill. The spheroid has the same volume of the sphere and aspect ratio equal to 0.4 with

resulting semi-major axis a = 1850 m and semi-minor axes b = c = 740 m; it is vertically

elongated. The sill is a horizontal square crack of side l = 2 km; both sources act in a

homogeneous and elastic medium, to consider the effects of the different shape only.

Fig. 6 reports the gravity patterns from the source axis to 10 km distance along the x

axis; the solid line is the analytical solution while the squares are the results from nu-

merical integration. The figure shows that the gravity change ∆gM due to a Mogi source

in a homogeneous and elastic half-space is null and the only contribution observable at

surface would be the free-air effect. This agrees with analytical results by Walsh and

Rice (1979), Sasai (1986), Bonafede and Mazzanti (1998). Our numerical “zero” is 0.5

µGal, well below instrumental error, confirming the robustness of the Gauss integration

within the FE mesh and the good approximation of the half-space by the numerical

domain.

Different results are obtained for models SPHEROID and SILL, dilating in a homoge-

neous medium (Fig. 7). We report the computed vertical displacement (the thin solid

line) which is representative of ∆gFA. From now on the gravity changes will be shown

normalized to the uplift above the source center (coinciding with the maximum up-

lift for sphere and sill models). In the case of the spheroid, the gravity variation ∆gM

12



is negative (Fig. 7a, thick solid line). Therefore, if the gravity signal generated by a

spheroid is modeled by a spherical source, it may lead to an overestimation of the den-

sity within the source. This result is also confirmed by Battaglia and Segall (2004) that

performed inversions of geodetic and gravity data generated by a spheroid, by means of

a spherical source. They found that the isotropic point-source approximation leads to an

overestimation of depth, mass and density of the intrusion. Fig. 7b shows the opposite

effect due to the sill: the total contribution is positive, without new mass input. Note

that in this case the contribution ∆gV (dotted line) is almost null. This behavior arises

from the strain field generated by the sill in the half-space, causing contraction above

it and lateral dilatation. We compare these results with the analytical ones provided by

Sasai (1986), finding good agreement (Gilda Currenti personal communication). In a

recent paper Battaglia et al. (2006) implemented the analytical solutions of the spheroid

(Yang et al., 1988) within the gravity calculation method developed by Walsh and Rice

(1979). They found that the gravity change due to the medium deformation is negligible

for a spheroidal cavity while it is noticeable for a sill. Good agreement is found from

the comparison between our and their results for the sill. Instead, our results for the

spheroidal cavity is not in agreement with their findings, as shown in Fig. 7a. However,

since comparisons between our models and the analytical solutions (when available, like

models MOGI-1, MOGI-2 and SILL) show very good agreement, and since the method

of gravity computation shown here is independent on the source shape and properties

of the medium, we are confident with the robustness of the present results.

In Fig. 8 the results are reported for two models characterized respectively by density

contrast of 30% at 3 km depth (MOGI-2) and within the caldera rim (MOGI-3). In the

first case (Fig. 8a), solutions are in agreement with those by Bonafede and Mazzanti

(1998) (not shown here). A larger effect is visible when the low density is restricted to

the caldera (Fig. 8b). In this case, ∆gL accounts for the density discontinuity at the
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circular boundary of the cylinder also. The density jump reflects into the step of the ∆gL

pattern, while the volumetric and free-air (∝ uz) terms are continuous. Indeed, if we

compare the two models, we find a similar pattern of ∆gV because the density contrast

has little effect in the strain field, while ∆gL is more sensitive to this discontinuity.

These models show that this kind of inhomogeneities, even if very localized (like within

the caldera), must be taken into account to perform gravity modelling. Results similar

to MOGI-2 were obtained by Battaglia and Segall (2004) for a massless cavity in a

layered medium. They found a small (but different from 0) contribution to the residual

gravity due to a density contrast of 13% at Long Valley caldera.

The contribution of heterogeneous rigidities within the medium is emphasized in model

MOGI-4. Indeed, as long as the rigidity ratios are small, the contribution to ∆gM/uz

is of the order of some µGal/m. In Fig. 9a the results is shown for an extreme ratio of

µ1/µ0 = 0.1 between caldera and remaining medium. The low rigidity of the caldera

amplifies the displacement field and hence the terms linked to this parameter (∆gFA

and ∆gL), while the volumetric term ∆gV is almost unchanged from the homogeneous

case in Fig. 6. A very low effective rigidity could be suitable to describe long term

deformation for a standard linear solid rheology; this rheology may apply to volcanic

areas such as CF, due to the high temperature, the presence of erupted products,

incoherent materials and hydrothermal activity. A further model, MOGI-5, accounts for

both the characteristics of MOGI-4 and MOGI-3, having the caldera with low rigidity

and low density (Fig. 9b). Since the displacement generated from this model is equal

to MOGI-4, ∆gV is very similar to that of panel (a). The density contrast between the

caldera and the remaining medium causes a lower ∆gL and a small step in its pattern.

We consider also two cases of inelastic medium, described by plastic rheology. In the

case of uniform yield stress within the medium, the deformation is approximately radial

around the spherical source and the total effect is null (Fig. 10a), similarly to the
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elastic homogeneous model. The sill is also modelled (not shown here) in a medium

homogeneously plastic, finding that ∆gM/uz is unchanged with respect to the elastic

case, as observed for the spherical source. Indeed, the plastic medium contributes by

amplifying both uz and the gravity terms, leaving unchanged the ratio between them.

In the case of model MOGI-7, a rheologic discontinuity is present, since the caldera is

plastic while the rest of the medium is elastic. It is evident from Fig. 10b that when the

yield stress is not uniform, the gravity change ∆gM is different from 0. Indeed, the total

contribution is positive within the caldera while it becomes negative out of the caldera

rim, vanishing at 7-8 km from the center of the model. This model is useful to describe

localized rheology discontinuities, likely to be present in volcanic areas. It is interesting

to note that the gravity terms are very similar to those shown in Fig. 9a, indicating that

both the low rigidity and the plastic rheology act to enhance the deformation within the

caldera, allowing for larger ∆gL terms while ∆gV is similar to the elastic value. Indeed,

∆gL is sensitive to the deviatoric strain (mostly plastic) while ∆gV is sensitive only to

the isotropic strain (elastic). This kind of behavior was also figured out by Trasatti et al.

(2005), showing that the elasto-plastic rheology induces larger deformations within the

caldera.

5 Contribution of the inflating source

In the previous section the reservoirs are considered massless, i.e. they are cavities

within which the overpressure ∆P . Whether the expansion of cavities is due to new

mass input, internal processes or pore pressure and temperature migration, the gravity

change due to the source at a benchmark can be computed as

∆gS = G







∫

V ′

S

ρ′
S

cos θ′

r′2
dV ′

−

∫

VS

ρS

cos θ

r2
dV





 (14)
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where V ′
S, VS are the source volumes after and before the deformation, respectively,

and all primed variables refer to the deformed configuration. We assume that the main

process determining the ∆gS is the new mass entering into the reservoir. This process

has several consequences: volume variation, density growth due the increased internal

pressure and the displacement of the center of mass of the reservoir due to the asym-

metric deformation of the medium in proximity of the free surface. For simplicity, we

assume ρS, ρ′
S to be mean internal densities, and we approximate the mass at the source

center (due to the source depth, assumed as 5 km, much larger than the extension).

The mass change is ∆M = ρ∆V + V ∆ρ and the density after deformation is expressed

by ρ′
S = (M + ∆M)/(V + ∆V ), at the first order. It results that:

ρ′
S ∼

M

V

(

1 −
∆V

V

)

+
∆M

V
∼ ρS

(

1 −
∆V

V

)

+ ρS

∆V

V
+ ∆ρ = ρS + ∆ρ (15)

The ratio ∆ρ/ρS = ∆P/K ∼ 10−3, where ∆P is the overpressure and K is the isother-

mal incompressibility, so that ρ′
S ∼ ρS and the main effect on the gravity change is the

volume increase of the magma reservoir (Franchini , 2005). In conclusion, the resulting

∆gS is expressed by:

∆gS = GρS∆V
cos θ

r2
(16)

The volume variation of a cavity with arbitrary shape is obtained by integrating the

normal displacement over the boundary:

∆V =
∫

S

u · dS (17)

Within the FE grid the integral is performed adopting the procedure outlined for the

gravity term ∆gL (see eqs. (7) and (10)), using eq. (13). The observed gravity change

at CF is 75±12 µGal/m, which must be equal to ∆gR = ∆gS +∆gM . From eq. (16) and

16



the values of ∆gM computed for the sources in table 1 we obtain the source densities

ρS.

Volume variations and density estimates are reported in Fig. 11. The density value cal-

culated for the sphere in the homogeneous medium (MOGI-1) is very similar to that

usually found in literature for magmatic sources. Indeed, Berrino et al. (1984) and

Berrino (1994) estimated 2500 kg/m3, suggesting the hypothesis of silicate melts enter-

ing a reservoir rather than hydrothermal fluids within a confined aquifer. All the models

(except MOGI-6) show similar volume variation, while the densities inferred range from

∼400 to ∼3300 kg/m3. The contribution of the medium, when homogeneously plastic

(MOGI-6), is null and the inferred density is comparable to the elastic models, ∼2000

kg/m3. However, the volume variation is very large, due to the enhanced deformation

allowed in the medium. The density inferred in models characterized by density layering

(MOGI-2 and MOGI-3) is greater than that inferred in a homogeneous model. Indeed,

since the gravity contribution ∆gM is negative, the observed positive gravity change

must be due to a larger density for the new mass. Also MOGI-5 (low rigidity and low

density caldera) requires high density in spite of the positive ∆gM value, because of

the larger uplift. It is interesting to note that models MOGI-4 (low rigidity caldera),

MOGI-5 and MOGI-7 (plastic caldera) produce very similar ∆gM value (Fig. 9 and 10),

but intrusion density differ by ± 25%.

Due to the compensation of the negative value computed for ∆gM (Fig. 7a), the density

inferred for the spheroid is quite high, being about 3300 kg/m3. This value is much

higher than pertinent to trachytic basalts at CF (∼ 2300-2500 kg/m3). On the other side,

the density inferred for the sill model is very low, 410 kg/m3. Since supercritical fluid

densities are of the order of hundreds of kg/m3, this value would indicate a hydrothermal

source instead of a magmatic source, as suggested by Battaglia et al. (2006) for a penny

shaped crack.
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Computations for mass input ∆M = ρ∆V are reported in table 2. Based on the eval-

uation of gravity residuals and the assumption of a pressurized point-source, Berrino

et al. (1984) and Berrino (1994) suggested that a subsurface mass increase of 2·1011 kg

took place between 1982-84. Results from models with spherical sources are typically

2-3 times greater than this value. The all plastic model, MOGI-6, has a very high vol-

ume variation due to the enhanced deformation of the plastic medium. The computed

density is ∼2000 kg/m3 while the mass input is 3-4 times the estimated value. On the

other side, the mass calculated for the sill model is a factor 4 less than the reference

value.

6 Conclusions

We develop a numerical technique to calculate gravity changes due to deep inflating

sources using FE modelling. Even if the models presented are too simple for realistic

application to the CF caldera, the method is very general and allows to account for

many characteristics of the studied area: various source shapes, density and rigidity

discontinuities, rheological heterogeneities. Very few analytical solutions are available

in literature (e.g. sphere, sill, spheroid in elastic media and point-sources in viscoelastic

media), while the FE models may be characterized arbitrarily. The gravity calculations

distinguish between the contribution of the medium and of the mass intrusion. Very

different contributions come from the deformation of the medium, according to source

shape. We separate the effect of the displacement of layers interfaces (∆gL) and of the

medium compressibility (∆gV ). We consider the gravity changes observed at CF caldera

during the 1982-84 unrest episode, where a free-air corrected gravity residual of 75±12

µGal/m was observed. The FE models developed includes heterogeneities in density,

rigidity and rheological properties in order to point out which may be important in
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affecting the observations. It must be noted that the large deformation is well outside

the elastic limit of any rock material. We show that non-spherical sources such as sill

and spheroid yield positive or negative gravity changes (respectively), without input of

new mass. The density values computed for these models are very different, changing

by a factor 8 between extreme end models. The results clearly point out the importance

of the source shape and of the characteristics of the medium in gravity calculation and

source density estimation.

The proposed models, even if not oriented yet to data inversions, give hints in un-

derstanding the effects of considering realistic structure of the studied area in gravity

computations. We fit the uplift and the gravity above the source but do not yet attempt

to reproduce the spatial pattern away from the axis. This will be done after developing

a realistic model taking into account the characteristics of the area. Density and elastic

parameters can be extracted, in principle, from seismic tomography studies and from

empirical relationships between seismic velocity and density (Brocher , 2005). However,

long term deformation in volcanic areas may be largely affected by anelastic relaxation

and drainage conditions. The large deformations which took place at CF are better

described in terms of plastic rather than elastic constitutive relationships. Laboratory

studies on samples extracted from deep drilling seem the only plausible way to obtain

information on the rheological properties of the medium. The source shape is also very

important, but only direct modelling has been attempted up to now. Inversion proce-

dure to retrieve the shape of a point-like deformation source in laterally heterogeneous

and inelastic media have been proposed recently (Trasatti et al., 2007), and this tech-

niques should be further developed to include modeling of gravity changes. From direct

modeling we know that vertical and horizontal deformation patterns are necessary to

distinguish among different source shapes (e.g. Dieterich and Decker , 1975): including

gravity data gives further constraints to restrict the range of acceptable models.
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Table 1. List of models of which we calculate the gravity variations. The overpressure

within the sources is ∆P = 50 MPa and all the sources are placed at depth d = 5 km.

The layer has horizontal interface and a height of 3 km. The caldera has a cylindrical

shape of 3 km radius and 3 km height; it lays at the center of the model, co-axial with

the sources. The parameters are explained in the text.

Table 2. Volume variation and density calculated for each model (characteristics re-

ported in table 1) due to input of new mass within the cavity.

Fig. 1. Map of Campi Flegrei caldera showing the outer rim (open triangles) and the

inner caldera (full triangles); the leveling lines (dotted) were surveyed during 1982-84

unrest episode, while the squares represents the gravity stations active in that period.

Fig. 2. (a) gravity variations and elevation change observed during 1981-2001 at Serapeo

roman market (Pozzuoli), at the center of CF; (b) gravity due to the ground uplift (free-

air correction); (c) residual gravity due to the difference between the observed and the

free-air corrected gravity.

Fig. 3. Schematic representation of the gravity contributions: ∆gFA is the free-air change

proportional to the uplift; ∆gL is the change caused by the lifted portion of the ground

(Bouguer anomaly) and of interfaces between density layers; ∆gV is the gravity field

due to the medium compressibility; ∆gS is the contribution of the material filling the

expanding part of the source. In the right hand side of the figure is indicated the

geometry of the gravity integration of elementary volume dV , its displacement u, the

observation point P , the vector r between dV and P , and the angle θ between them.

Fig. 4. (a) the Gauss integration is computed by mapping each arbitrarily distorted brick

element (x-space) to a trilinear hexahedral element (x′-space). The two-points Gauss

quadrature is performed by calculating the integrand function at the 8 Gauss points
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indicated by “+” symbol. (b) the surface integral within element faces is performed by

mapping x into x′. The vectors ds1 and ds2 are defined to be tangent to the surface,

defining the unit area shaded (see text for details).

Fig. 5. Perspective view of the FE model. The caldera is a cylinder of radius 3 km and

height 3 km, surrounded by a layer of similar thickness on top of the halfspace. The

Mogi source is shown at a depth of 5 km, with a radius of 1 km.

Fig. 6. Contributions and medium gravity change due to an inflating spherical pressure

source in a homogeneous and elastic half-space. Comparison between analytical solu-

tions (solid line) and numerical (squares). The contribution due to the inflation of a

massless sphere ∆gM = ∆gL + ∆gV is null.

Fig. 7. Gravity terms normalized to the maximum uplift umax
z , and vertical displace-

ment in a homogeneous medium due to (a) vertically elongated spheroidal source, (b)

horizontal sill (in this case ∆gV ≃ 0 and ∆gM overlaps ∆gL).

Fig. 8. Gravity terms normalized to the maximum uplift umax
z , and vertical displacement

due to an inflating spherical pressure source in a medium characterized by density

contrasts of 30% in: (a) shallow layer of height 3 km; (b) cylindrical caldera.

Fig. 9. Gravity terms normalized to the maximum uplift umax
z , and vertical displacement

due to an inflating spherical pressure source in a medium characterized by: (a) hetero-

geneous caldera µ1/µ0 = 0.1; (b) caldera with heterogeneous rigidity µ1 and density

ρ1.

Fig. 10. Gravity terms normalized to the maximum uplift umax
z , and vertical displace-

ment in an inelastic medium: (a) all plastic, (b) plastic caldera and remaining elastic.

Fig. 11. Density calculations versus volume variations of the proposed models.
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Model Source Medium characteristics Parameters

MOGI-1 Sphere Homogeneous & elastic µ0 = 1 GPa; ρ0 = 2500 kg/m3; a = 1 km

MOGI-2 ” Heterogeneous density layer ρ1 = 1800 kg/m3; ρ0 = 2500 kg/m3

MOGI-3 ” Heterogeneous density caldera ”

MOGI-4 ” Heterogeneous rigidity caldera µ1 = 0.1µ0

MOGI-5 ” Heterog. rigidity & density cal. µ1=0.1µ0; ρ1=1800kg/m3; ρ0=2500kg/m3

MOGI-6 ” All plastic σy = 30 MPa

MOGI-7 ” Plastic caldera σy = 0.5 MPa

SPHEROID Spheroid Homogeneous & elastic V sphere = V spheroid; a=1850 m; b=c=0.4a

SILL Sill ” l = 2 km

Table 1
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Model ∆V (106 m3) ρS (kg/m3) ∆M (1011 kg)

MOGI-1 155 2690 4.2

MOGI-2 155 2907 3.8

MOGI-3 155 3194 3.4

MOGI-4 159 2523 4.0

MOGI-5 159 3328 5.3

MOGI-6 354 2033 7.2

MOGI-7 159 2031 3.2

SPHEROID 174 3271 5.7

SILL 125 410 0.5

Table 2
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