655 research outputs found

    Nucleon-deuteron scattering with the JISP16 potential

    Full text link
    The nucleon-nucleon J-matrix Inverse Scattering Potential JISP16 is applied to elastic nucleon-deuteron (Nd) scattering and the deuteron breakup process at the lab. nucleon energies up to 135 MeV. The formalism of the Faddeev equations is used to obtain 3N scattering states. We compare predictions based on the JISP16 force with data and with results based on various NN interactions: the CD Bonn, the AV18, the chiral force with the semi-local regularization at the 5th order of the chiral expansion and with low-momentum interactions obtained from the CD Bonn force as well as with the predictions from the combination of the AV18 NN interaction and the Urbana IX 3N force. JISP16 provides a satisfactory description of some observables at low energies but strong deviations from data as well as from standard and chiral potential predictions with increasing energy. However, there are also polarization observables at low energies for which the JISP16 predictions differ from those based on the other forces by a factor of two. The reason for such a behavior can be traced back to the P-wave components of the JISP16 force. At higher energies the deviations can be enhanced by an interference with higher partial waves and by the properties of the JISP16 deuteron wave function. In addition, we compare the energy and angular dependence of predictions based on the JISP16 force with the results of the low-momentum forces obtained with different values of the momentum cutoff parameter. We found that such low-momentum forces can be employed to interpret the Nd elastic scattering data only below some specific energy which depends on the cutoff parameter. Since JISP16 is defined in a finite oscillator basis, it has properties similar to low momentum interactions and its application to the description of Nd scattering data is limited to a low momentum transfer region.Comment: 26 pages, 12 eps figures; Version accepted to Phys. Rev. C: text is shortened, few figures regarding the nucleon-deuteron elastic scattering observables are removed but a short discussion of the nucleon induced deuteron breakup cross section is added. Conclusions remain unchange

    Different Methods for the Two-Nucleon T-Matrix in the Operator Form

    Get PDF
    We compare three methods to calculate the nucleon-nucleon t-matrix based on the three-dimensional formulation of J. Golak et al., Phys. Rev. C 81, 034006, (2010). In the first place we solve a system of complex linear inhomogeneous equations directly for the t-matrix. Our second method is based on iterations and a variant of the Lanczos algorithm. In the third case we obtain the t-matrix in two steps, solving a system of real linear equations for the k-matrix expansion coefficients and then solving an on-shell equation, which connects the scalar coefficients of the k- and t-matrices. A very good agreement among the three methods is demonstrated for selected nucleon-nucleon scattering observables using a chiral next-to-next-to-leading-order neutron-proton potential. We also apply our three-dimensional framework to the demanding problem of proton-proton scattering, using a corresponding version of the nucleon-nucleon potential and supplementing it with the (screened) Coulomb force, taken also in the three-dimensional form. We show converged results for two different screening functions and find a very good agreement with other methods dealing with proton-proton scattering.Comment: 18 pages, 10 figures (54 eps files

    The European Union in the World — A Community of Values

    Get PDF
    These are momentous times in Europe. The Euro has been successfully introduced, the enlargement negotiations are approaching their climax, and the European Convention (“Convention”) is moving towards the drafting of a constitution for a new, continent-wide political entity. At the same time, unrest is manifest, particularly in two areas. On the one hand, many of our citizens, and not just the political elites, are dissatisfied with Europe\u27s performance on the world stage and are concerned about the maintenance of peace and security within the Union. In these areas they would like to see a strengthened, more effective entity-- “more Europe.” On the other hand, their disenchantment with the long reach of European Union (“EU” or “Union”) regulation in the first pillar area of economic policy is growing. The feeling of loss of local control over their destiny and a vague feeling of potential loss of identity within an ever more centralized polity is palpable. Here, they want “less Europe.” In the outside world, change is also the order of the day. The ice-sheet of bipolarity, which overlaid and hid the complexity of international relations during the Cold War, is breaking up at an ever-increasing speed and revealing a world in which two paradigms are competing to become the underlying ordering principles for the new century. The traditional paradigm of interacting Nation States, each pursuing its own separate interests, with alliances allowing the small to compete with the large, is alive and well, and its proponents like Machiavelli or Churchill continue to be in vogue in the literature of international relations and the rhetoric of world leaders. At the same time, there is a school of thought which points to the growing economic and ecological interdependence of our societies and the necessity for new forms of global governance to complement national action. It is also becoming abundantly clear that the concept of a “Nation State” is often a fiction, positing as it does an identity between the citizens of a State and the members of a culturally homogenous society. For both reasons, the concept of the Nation State as the principal actor on the world stage, is called into question. The experience of the Union with the sharing of State sovereignty is clearly related to the second paradigm and also to the EU\u27s firm support for the development of the United Nations (“U.N.”) as well as other elements of multilateral governance. It would hardly be wise to suggest that any foreign policy, and certainly not that of the EU, should be based only on this paradigm. Given the recurrent threats to security, which seem to be part of the human condition expressed by some as the “inevitability of war”--the defense of territorial integrity; action against threats of aggression; and resistance to crimes against humanity such as genocide--the ability to conduct a security policy based much more on the old paradigm of interacting interests will continue to be required. That the EU needs to develop such a capability will be taken here as a given. Such a crisis-management capability will be essential to the Union, but will be distinguished here from the more long-term elements of foreign policy, which can be thought of as being designed to reduce the need for crisis management in the context of a security policy to a minimum. The crisis-management area of policy will not be treated further here. The thesis of this Essay is that the same set of political concepts can serve as a guide to the future internal development of the EU and as the basis of such a long-term foreign policy. Furthermore, it suggests that neither should be seen in terms of the balancing of interests but rather, as the expression of a small list of fundamental values. The list is as follows: (1) the rule of law as the basis for relations between members of society; (2) the interaction between the democratic process and entrenched human rights in political decision-making; (3) the operation of competition within a market economy as the source of increasing prosperity; (4) the anchoring of the principle of solidarity among all members of society alongside that of the liberty of the individual; (5) the adoption of the principle of sustainability of all economic development; and (6) the preservation of separate identities and the maintenance of cultural diversity within society. These values can be seen as the answer to the question posed both, by citizens of the Union and by our fellow citizens of the world: “What does the EU stand for?” In exploring these values we should, however, remember that in the real world there will be occasions on which Realpolitik will intrude and the interest-based paradigm will prevail

    Studies of new Higgs boson interactions through nonresonant HH production in the b¯bγγ fnal state in pp collisions at √s = 13 TeV with the ATLAS detector

    Get PDF
    A search for nonresonant Higgs boson pair production in the b ¯bγγ fnal state is performed using 140 fb−1 of proton-proton collisions at a centre-of-mass energy of 13 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. This analysis supersedes and expands upon the previous nonresonant ATLAS results in this fnal state based on the same data sample. The analysis strategy is optimised to probe anomalous values not only of the Higgs (H) boson self-coupling modifer κλ but also of the quartic HHV V (V = W, Z) coupling modifer κ2V . No signifcant excess above the expected background from Standard Model processes is observed. An observed upper limit µHH < 4.0 is set at 95% confdence level on the Higgs boson pair production cross-section normalised to its Standard Model prediction. The 95% confdence intervals for the coupling modifers are −1.4 < κλ < 6.9 and −0.5 < κ2V < 2.7, assuming all other Higgs boson couplings except the one under study are fxed to the Standard Model predictions. The results are interpreted in the Standard Model efective feld theory and Higgs efective feld theory frameworks in terms of constraints on the couplings of anomalous Higgs boson (self-)interactions

    Measurement of exclusive pion pair production in proton–proton collisions at √s=7 TeV with the ATLAS detector

    Get PDF
    The exclusive production of pion pairs in the process pp→ ppπ+π- has been measured at s=7TeV with the ATLAS detector at the LHC, using 80μb-1 of low-luminosity data. The pion pairs were detected in the ATLAS central detector while outgoing protons were measured in the forward ATLAS ALFA detector system. This represents the first use of proton tagging to measure an exclusive hadronic final state at the LHC. A cross-section measurement is performed in two kinematic regions defined by the proton momenta, the pion rapidities and transverse momenta, and the pion–pion invariant mass. Cross-section values of 4.8±1.0(stat)-0.2+0.3(syst)μb and 9±6(stat)-2+2(syst)μb are obtained in the two regions; they are compared with theoretical models and provide a demonstration of the feasibility of measurements of this type

    Comparison of inclusive and photon-tagged jet suppression in 5.02 TeV Pb+Pb collisions with ATLAS

    Get PDF
    Parton energy loss in the quark–gluon plasma (QGP) is studied with a measurement of photon-tagged jet production in 1.7 nb−1 of Pb+Pb data and 260 pb−1 of pp data, both at sNN=5.02 TeV, with the ATLAS detector. The process pp →γ+jet+X and its analogue in Pb+Pb collisions is measured in events containing an isolated photon with transverse momentum (pT) above 50 GeV and reported as a function of jet pT. This selection results in a sample of jets with a steeply falling pT distribution that are mostly initiated by the showering of quarks. The pp and Pb+Pb measurements are used to report the nuclear modification factor, RAA, and the fractional energy loss, Sloss, for photon-tagged jets. In addition, the results are compared with the analogous ones for inclusive jets, which have a significantly smaller quark-initiated fraction. The RAA and Sloss values are found to be significantly different between those for photon-tagged jets and inclusive jets, demonstrating that energy loss in the QGP is sensitive to the colour-charge of the initiating parton. The results are also compared with a variety of theoretical models of colour-charge-dependent energy loss

    Searches for lepton-flavour-violating decays of the Higgs boson into eτ and μτ in \sqrt{s} = 13 TeV pp collisions with the ATLAS detector

    Get PDF
    Abstract This paper presents direct searches for lepton flavour violation in Higgs boson decays, H → eτ and H → μτ, performed using data collected with the ATLAS detector at the LHC. The searches are based on a data sample of proton-proton collisions at a centre-of-mass energy s s \sqrt{s} = 13 TeV, corresponding to an integrated luminosity of 138 fb−1. Leptonic (τ → ℓνℓντ) and hadronic (τ → hadrons ντ) decays of the τ-lepton are considered. Two background estimation techniques are employed: the MC-template method, based on data-corrected simulation samples, and the Symmetry method, based on exploiting the symmetry between electrons and muons in the Standard Model backgrounds. No significant excess of events is observed and the results are interpreted as upper limits on lepton-flavour-violating branching ratios of the Higgs boson. The observed (expected) upper limits set on the branching ratios at 95% confidence level, B B \mathcal{B} (H → eτ) < 0.20% (0.12%) and B B \mathcal{B} (H → μτ ) < 0.18% (0.09%), are obtained with the MC-template method from a simultaneous measurement of potential H → eτ and H → μτ signals. The best-fit branching ratio difference, B B \mathcal{B} (H → μτ) → B B \mathcal{B} (H → eτ), measured with the Symmetry method in the channel where the τ-lepton decays to leptons, is (0.25 ± 0.10)%, compatible with a value of zero within 2.5σ

    Measurement of vector boson production cross sections and their ratios using pp collisions at s=13.6 TeV with the ATLAS detector

    Get PDF

    Measurement of ZZ production cross-sections in the four-lepton final state in pp collisions at √s = 13.6 TeV with the ATLAS experiment

    Get PDF
    corecore