87 research outputs found

    Mechanistic differences between methanol and dimethyl ether in zeolite-catalyzed hydrocarbon synthesis

    Get PDF
    Water influences critically the kinetics of the autocatalytic conversion of methanol to hydrocarbons in acid zeolites. At very low conversions but otherwise typical reaction conditions, the initiation of the reaction is delayed in presence of H2_{2}O. In absence of hydrocarbons, the main reactions are the methanol and dimethyl ether (DME) interconversion and the formation of a C1_{1} reactive mixture—which in turn initiates the formation of first hydrocarbons in the zeolite pores. We conclude that the dominant reactions for the formation of a reactive C1_{1} pool at this stage involve hydrogen transfer from both MeOH and DME to surface methoxy groups, leading to methane and formaldehyde in a 1:1 stoichiometry. While formaldehyde reacts further to other C1_{1} intermediates and initiates the formation of first C–C bonds, CH4_{4} is not reacting. The hydride transfer to methoxy groups is the rate-determining step in the initiation of the conversion of methanol and DME to hydrocarbons. Thus, CH4_{4} formation rates at very low conversions, i.e., in the initiation stage before autocatalysis starts, are used to gauge the formation rates of first hydrocarbons. Kinetics, in good agreement with theoretical calculations, show surprisingly that hydrogen transfer from DME to methoxy species is 10 times faster than hydrogen transfer from methanol. This difference in reactivity causes the observed faster formation of hydrocarbons in dry feeds, when the concentration of methanol is lower than in presence of water. Importantly, the kinetic analysis of CH4_{4} formation rates provides a unique quantitative parameter to characterize the activity of catalysts in the methanol-to-hydrocarbon process

    Syntheses and magnetostructural investigations on Kuratowski-type homo- and heteropentanuclear coordination compounds [MZn4Cl4(L)6] (Mll = Zn, Fe, Co, Ni, or Cu; L = 5,6-Dimethyl-1,2,3-benzotriazolate) represented by the nonplanar K3,3 graph

    No full text
    Homo- and heteropentanuclear coordination compounds [MZn(4)Cl(4)(L)(6)] (M(II) = Zn, Fe, Co, Ni, or Cu; L = 5,6-dimethyl-1,2,3-benzotriazolate) were prepared containing mu(3)-bridging N-donor ligands (1,2,3-benzotriazolate), which are structurally related to the fundamental secondary building unit of Metal-organic Framework Ulm University-4 (MFU-4). The unique topology of these T(d)-symmetrical compounds is characterized by the nonplanar K(3,3) graph, introduced into graph theory by the mathematician Casimir Kuratowski in 1930. The following "Kuratowski-type" compounds were investigated by single-crystal X-ray structure analysis: [MZn(4)Cl(4)(Me(2)bta)(6)].2DMF (M(II) = Zn, Fe, Co, and Cu; DMF = N,N'-dimethylformamide) and [MZn(4)Cl(4)(Me(2)bta)(6)].2C(6)H(5)Br (M(II) = Co and Ni; C(6)H(5)Br = bromobenzene). The mu(3)-bridging benzotriazolate ligands span the edges of an imaginary tetrahedron, in the center of which a redox-active octahedrally coordinated M(II) ion is placed. Four Zn(II) ions are located at the corners of the coordination units. Each Zn center is bound to a monodentate Cl(-) anion and three N-donor atoms stemming from different benzotriazolate ligands. The fact that open-shell redox-active M(II) ions can be introduced selectively into the central octahedral coordination sites is unambiguously proven by a combination of magnetic measurements, UV-vis spectroscopy, and energy-dispersive X-ray and inductively coupled plasma atomic emission spectrometry analysis. The phase purity of all compounds was checked by powder X-ray diffractometry, IR spectroscopy, and elemental analysis. The electronic spectra and magnetic properties of the compounds are in complete agreement with their structures determined from single-crystal data. Thermogravimetric analysis shows that all compounds possess a high thermal stability up to 673 K. The pentanuclear compounds retain their structural integrity in solution, as evidenced by time-of-flight mass spectrometry analysis and comparative solution and solid-state diffuse-reflectance spectroscopy. High stability paired with the presence of redox-active metal ions and Lewis-acidic Zn centers renders Kuratowski-type compounds structural and functional models for future MFU-4-type bi- and multifunctional heterogeneous catalysts

    Formation Mechanism of the First Carbon–Carbon Bond and the First Olefin in the Methanol Conversion into Hydrocarbons

    No full text
    The elementary reactions leading to the formation of the first carbon–carbon bond during early stages of the zeolite-catalyzed methanol conversion into hydrocarbons were identified by combining kinetics, spectroscopy, and DFT calculations. The first intermediates containing a C−C bond are acetic acid and methyl acetate, which are formed through carbonylation of methanol or dimethyl ether even in presence of water. A series of acid-catalyzed reactions including acetylation, decarboxylation, aldol condensation, and cracking convert those intermediates into a mixture of surface bounded hydrocarbons, the hydrocarbon pool, as well as into the first olefin leaving the catalyst. This carbonylation based mechanism has an energy barrier of 80 kJ mol−1 for the formation of the first C−C bond, in line with a broad range of experiments, and significantly lower than the barriers associated with earlier proposed mechanisms

    Formation Mechanism of the First Carbon–Carbon Bond and the First Olefin in the Methanol Conversion into Hydrocarbons

    No full text
    The elementary reactions leading to the formation of the first carbon–carbon bond during early stages of the zeolite-catalyzed methanol conversion into hydrocarbons were identified by combining kinetics, spectroscopy, and DFT calculations. The first intermediates containing a C−C bond are acetic acid and methyl acetate, which are formed through carbonylation of methanol or dimethyl ether even in presence of water. A series of acid-catalyzed reactions including acetylation, decarboxylation, aldol condensation, and cracking convert those intermediates into a mixture of surface bounded hydrocarbons, the hydrocarbon pool, as well as into the first olefin leaving the catalyst. This carbonylation based mechanism has an energy barrier of 80 kJ mol−1 for the formation of the first C−C bond, in line with a broad range of experiments, and significantly lower than the barriers associated with earlier proposed mechanisms

    Elucidating Gating Effects for Hydrogen Sorption in MFU-4-Type Triazolate-Based Metal-Organic Frameworks Featuring Different Pore Sizes

    No full text
    A highly porous member of isoreticular MFU-4-type frameworks, [Zn(5)Cl(4)(BTDD)(3)] (MFU-4/(arge)) (H(2)-BTDD = bis(1H-1,2,3-triazolo[4,5-b],- [4',5'-i])dibenzo[1,4]dioxin), has been synthesized using ZnCl(2) and H(2)-BTDD in N,N-dimethylformamide as a solvent. MFU-4l represents the first example of MFU-4-type frameworks featuring large pore apertures of 9.1 angstrom. Here, MFU-4l serves as a reference compound to evaluate the origin of unique and specific gas-sorption properties of MFU-4, reported previously. The latter framework features narrow-sized pores of 2.5 angstrom that allow passage of sufficiently small molecules only (such as hydrogen or water), whereas molecules with larger kinetic diameters (e.g., argon or nitrogen) are excluded from uptake. The crystal structure of MFU-4l has been solved ab initio by direct methods from 3D electron-diffraction data acquired from a single nanosized crystal through automated electron diffraction tomography (ADT) in combination with electron-beam precession. Independently, it has been solved using powder X-ray diffraction. Thermogravimetric analysis (TGA) and variable-temperature X-ray powder diffraction (XRPD) experiments carried out on MFU-4l indicate that it is stable up to 500 degrees C (N(2) atmosphere) and up to 350 degrees C in air. The framework adsorbs 4 wt % hydrogen at 20 bar and 77 K, which is twice the amount compared to MFU-4. The isosteric heat of adsorption starts for low surface coverage at 5 kJ mol(-1) and decreases to 3.5 kJ mol(-1) at higher H(2) uptake. In contrast, MFU-4 possesses a nearly constant isosteric heat of adsorption of ca. 7 kJ mol(-1) over a wide range of surface coverage. Moreover, MFU-4 exhibits a H(2) desorption maximum at 71 K, which is the highest temperature ever measured for hydrogen physisorbed on metal-organic frameworks (MOFs). RI Mugnaioli, Enrico/E-6237-2011; Kolb, Ute/A-2642-201
    • …
    corecore