27 research outputs found

    Enrichment of Pluripotent Stem Cell-Derived Hepatocyte-Like Cells by Ammonia Treatment

    Get PDF
    Embryonic stem cells (ESCs) and induced pluripotent stem cells (iPSCs) are potential resources for the regeneration of defective organs, including the liver. However, some obstacles must be overcome before this becomes reality. Undifferentiated cells that remain following differentiation have teratoma-forming potential. Additionally, practical applications require a large quantity of differentiated cells, so the differentiation process must be economical. Here we describe a DNA microarray-based global analysis of the gene expression profiles of differentiating human pluripotent stem cells. We identified differences and commonalities among six human pluripotent stem cell lines: the hESCs KhES1, KhES2, KhES3, and H1, and the iPSCs 201B7 and 243G1. Embryoid bodies (EBs) formed without requiring supplementation with inducing factors. EBs also expressed some liver-specific metabolic genes including the ammonia-metabolizing enzymes glutamine synthetase and carbamoyl-phosphate synthase 1. Real-time PCR analysis revealed hepatocyte-like differentiation of EBs treated with ammonia in Lanford medium. Analysis of DNA microarray data suggested that hepatocyte-like cells were the most abundant population in ammonia-treated cells. Furthermore, expression levels of undifferentiated pluripotent stem cell markers were drastically reduced, suggesting a reduced teratoma-forming capacity. These results indicate that treatment of EBs with ammonia in Lanford medium may be an effective inducer of hepatic differentiation in absence of expensive inducing factors

    Hoxa 11 is upstream of Integrin α8 expression in the developing kidney

    No full text
    Mutation of the functionally redundant Hoxa 11/Hoxd 11 genes gives absent or rudimentary kidneys resulting from a dramatic reduction of the growth and branching of the ureteric bud. To understand better the molecular mechanisms of Hoxa 11/Hoxd 11 function in kidney development, it is necessary to identify the downstream target genes regulated by their encoded transcription factors. To this end, we conducted a screen for Hoxa 11-responsive genes in two kidney cell lines. HEK293 cells, which usually do not express Hoxa 11, were modified to allow inducible Hoxa 11 expression. The mK10 cells, derived specifically for this study from Hoxa 11/Hoxd 11 double-mutant mice, were also modified to give cell populations with and without Hoxa 11 expression. Differential display, Gene Discovery Arrays, and Affymetrix genechip probe arrays were used to screen for genes up- or down-regulated by Hoxa 11. Nine genes, PDGF A, Cathepsin L, annexin A1, Mm.112139, Est2 repressor factor, NrCAM, ZNF192, integrin-associated protein, and GCM1, showed reproducible 3-fold or smaller changes in gene expression in response to Hoxa 11. One gene, the Integrin α8, was up-regulated approximately 20-fold after Hoxa 11 expression. The Integrin α8 gene is expressed together with Hoxa 11 in metanephric mesenchyme cells, and mutation of Integrin α8 gives a bud-branching morphogenesis defect very similar to that observed in Hoxa 11/Hoxd 11 mutant mice. In situ hybridizations showed a dramatic regional reduction in Integrin α8 expression in the developing kidneys of Hoxa 11/Hoxd 11 mutant mice. This work suggests that the Integrin α8 gene may be a major effector of Hoxa 11/Hoxd 11 function in the developing kidney

    Polycomb-group complex 1 acts as an E3 ubiquitin ligase for Geminin to sustain hematopoietic stem cell activity

    No full text
    Polycomb-group (PcG) genes encode multimeric nuclear protein complexes, PcG complex 1 and 2. PcG complex 2 was proved to induce transcription repression and to further methylate histone H3 at lysine-27 (H3K27). Subsequently PcG complex 1 is recruited through recognition of methylated H3K27 and maintains the transcription silencing by mediating monoubiquitination of histone H2A at lysine-119. Genetic evidence demonstrated a crucial role for PcG complex 1 in stem cells, and Bmi1, a member of PcG complex 1, was shown to sustain adult stem cells through direct repression of the INK4a locus encoding cyclin-dependent kinase inhibitor, p16CKI, and p19ARF. The molecular functions of PcG complex 1, however, remain insufficiently understood. In our study, deficiency of Rae28, a member of PcG complex 1, was found to impair ubiquitin-proteasome-mediated degradation of Geminin, an inhibitor of DNA replication licensing factor Cdt1, and to increase protein stability. The resultant accumulation of Geminin, based on evidence from retroviral transduction experiments, presumably eliminated hematopoietic stem cell activity in Rae28-deficient mice. Rae28 mediates recruiting Scmh1, which provides PcG complex 1 an interaction domain for Geminin. Moreover, PcG complex 1 acts as the E3 ubiquitin ligase for Geminin, as we demonstrated in vivo as well as in vitro by using purified recombinant PcG complex 1 reconstituted in insect cells. Our findings suggest that PcG complex 1 supports the activity of hematopoietic stem cells, in which high-level Geminin expression induces quiescence securing genome stability, by enhancing cycling capability and hematopoietic activity through direct regulation of Geminin
    corecore