1,035 research outputs found

    Phenomenological Model of Corrosion Process in Reinforced Concrete identified by AE

    Get PDF
    Corrosion of reinforcing steel is modelled phenomenologically as corrosion losses of three phases.   In order to identify the corrosion process in reinforced concrete based on the model, continuous AE monitoring in reinforced concrete specimens was conducted in an accelerated corrosion test and a cyclic wet and dry test.   It is demonstrated that two periods of high AE activities are observed.  The 1st AE activity corresponds to the onset of the corrosion in rebar of the 1st phase in the phenomenological model.  At the 2nd period of high activity AE events result from concrete cracking, corresponding to the 3rd phase in the model

    Improved bounds on SUSY accompanied neutrinoless double beta decay

    Get PDF
    Neutrinoless double beta decay induced by light Majorana neutrino exchange between two decaying nucleons with squark/slepton exchange inside one and W exchange inside the other nucleon (so-called vector-scalar exchange) gives stringent limits on R-parity violating interactions. We have extended previous work by including the tensor contribution to the transition rate. We discuss the improved limits on trilinear \Rp -MSSM couplings imposed by the current experimental limit on the \znbb decay half-life of 76^{76}Ge.Comment: replaced by revised version to appear in Phys. Lett.

    Non-collapsing renormalized QRPA with proton-neutron pairing for neutrinoless double beta decay

    Get PDF
    Using the renormalized quasiparticle random phase approximation (RQRPA), we calculate the light neutrino mass mediated mode of neutrinoless double beta decay of Ge76, Mo100, Te128 and Te130. Our results indicate that the simple quasiboson approximation is not good enough to study the neutrinoless double beta decay, because its solutions collapse for physical values of g_pp. We find that extension of the Hilbert space and inclusion of the Pauli Principle in the QRPA with proton-neutron pairing, allows us to extend our calculations beyond the point of collapse, for physical values of the nuclear force strength. As a consequence one might be able to extract more accurate values on the effective neutrino mass by using the best available experimental limits on the half-life of neutrinoless double beta decay.Comment: 15 pages, RevTex, 2 Postscript figures, to appear in Phys. Lett.

    Conditions for detecting CP violation via neutrinoless double beta decay

    Full text link
    Neutrinoless double beta decay data together with information on the absolute neutrino masses obtained from the future KATRIN experiment and/or astrophysical measurements give a chance to find CP violation in the lepton sector with Majorana neutrinos. We derive and discuss necessary conditions which make discovery of such CP violation possible for the future neutrino oscillation and mass measurements data.Comment: 15 pages, 4 figures, RevTe

    Shell Model Study of the Double Beta Decays of 76^{76}Ge, 82^{82}Se and 136^{136}Xe

    Get PDF
    The lifetimes for the double beta decays of 76^{76}Ge, 82^{82}Se and 136^{136}Xe are calculated using very large shell model spaces. The two neutrino matrix elements obtained are in good agreement with the present experimental data. For <1<1 eV we predict the following upper bounds to the half-lives for the neutrinoless mode: T1/2(0ν)(Ge)>1.85 1025yr.T^{(0\nu)}_{1/2}(Ge) > 1.85\,10^{25} yr., T1/2(0ν)(Se)>2.36 1024yr.T^{(0\nu)}_{1/2}(Se) > 2.36\,10^{24} yr. and T1/2(0ν)(Xe)>1.21 1025yrT^{(0\nu)}_{1/2}(Xe) > 1.21\,10^{25} yr. These results are the first from a new generation of Shell Model calculations reaching O(108^{8}) dimensions

    Neutrino-less Double Electron Capture - a tool to research for Majorana neutrinos

    Full text link
    The possibility to observe the neutrino-less double β \beta decay and thus to prove the Majorana nature of neutrino as well as provide a sensitive measure of its mass is a major challenge of to-day's neutrino physics. As an attractive alternative we propose to study the inverse process, the radiative neutrino-less double electron capture 0ν2EC0 \nu 2EC. The associated monoenergetic photon provides a convenient experimental signature. Other advantages include the favourable ratio of the 0ν2EC0 \nu 2EC to the competing 2ν2EC2\nu 2EC capture rates and, very importantly, the existence of coincidence trigger to suppress the random background. These advantages partly offset the expected longer lifetimes. Rates for the 0γ2EC0\gamma 2EC process are calculated. High Z atoms are strongly favoured. A resonance enhancement of the capture rates is predicted at energy release comparable to the 2P−1S2P-1S atomic level difference. The resonance conditions are likely to be met for decays to excited states in final nuclei. Candidates for such studies are considered. The experimental feasibility is estimated and found highly encouraging.Comment: New figure added, table updated, physical background discusse

    A large Hilbert space QRPA and RQRPA calculation of neutrinoless double beta decay

    Get PDF
    A large Hilbert space is used for the calculation of the nuclear matrix elements governing the light neutrino mass mediated mode of neutrinoless double beta decay of Ge76, Mo100, Cd116, Te128 and Xe136 within the proton-neutron quasiparticle random phase approximation (pn-QRPA) and the renormalized QRPA with proton-neutron pairing (full-RQRPA) methods. We have found that the nuclear matrix elements obtained with the standard pn-QRPA for several nuclear transitions are extremely sensitive to the renormalization of the particle-particle component of the residual interaction of the nuclear hamiltonian. Therefore the standard pn-QRPA does not guarantee the necessary accuracy to allow us to extract a reliable limit on the effective neutrino mass. This behaviour, already known from the calculation of the two-neutrino double beta decay matrix elements, manifests itself in the neutrinoless double-beta decay but only if a large model space is used. The full-RQRPA, which takes into account proton-neutron pairing and considers the Pauli principle in an approximate way, offers a stable solution in the physically acceptable region of the particle-particle strength. In this way more accurate values on the effective neutrino mass have been deduced from the experimental lower limits of the half-lifes of neutrinoless double beta decay.Comment: 19 pages, RevTex, 1 Postscript figur

    Short-range correlations and neutrinoless double beta decay

    Get PDF
    In this work we report on the effects of short-range correlations upon the matrix elements of neutrinoless double beta decay. We focus on the calculation of the matrix elements of the neutrino-mass mode of neutrinoless double beta decays of 48Ca and 76Ge. The nuclear-structure components of the calculation, that is the participant nuclear wave functions, have been calculated in the shell-model scheme for 48Ca and in the proton-neutron quasiparticle random-phase approximation (pnQRPA) scheme for 76Ge. We compare the traditional approach of using the Jastrow correlation function with the more complete scheme of the unitary correlation operator method (UCOM). Our results indicate that the Jastrow method vastly exaggerates the effects of short-range correlations on the neutrinoless double beta decay nuclear matrix elements.Comment: 12 pages, 3 figures, to appear in Physics Letters B (2007
    • …
    corecore