1,164 research outputs found

    Non-perturbation theory of electronic dynamic conductivity for two-barrier resonance tunnel nano-structure

    Full text link
    The non-perturbation theory of electronic dynamic conductivity for open two-barrier resonance tunnel structure is established for the first time within the model of rectangular potentials and different effective masses of electrons in the elements of nano-structure and the wave function linear over the intensity of electromagnetic field. It is proven that the results of the theory of dynamic conductivity, developed earlier in weak signal approximation within the perturbation method, qualitatively and quantitatively correlate with the obtained results. The advantage of non-perturbation theory is that it can be extended to the case of electronic currents interacting with strong electromagnetic fields in open multi-shell resonance tunnel nano-structures, as active elements of quantum cascade lasers and detectors.Comment: 10 pages, 2 figure

    Quasi-stationary states of electrons interacting with strong electromagnetic field in two-barrier resonance tunnel nano-structure

    Full text link
    An exact solution of non-stationary Schrodinger equation is obtained for a one-dimensional movement of electrons in an electromagnetic field with arbitrary intensity and frequency. Using it, the permeability coefficient is calculated for a two-barrier resonance tunnel nano-structure placed into a high-frequency electromagnetic field. It is shown that a nano-structure contains quasi-stationary states the spectrum of which consists of the main and satellite energies. The properties of resonance and non-resonance channels of permeability are displayed.Comment: 8 pages, 3 figure

    Energy spectrum of localized quasiparticles renormalized by multi-phonon processes at finite temperature

    Full text link
    The theory of renormalized energy spectrum of localized quasi-particle interacting with polarization phonons at finite temperature is developed within the Feynman-Pines diagram technique. The created computer program effectively takes into account multi-phonon processes, exactly defining all diagrams of mass operator together with their analytical expressions in arbitrary order over the coupling constant. Now it is possible to separate the pole and non-pole mass operator terms and perform a partial summing of their main terms. The renormalized spectrum of the system is obtained within the solution of dispersion equation in the vicinity of the main state where the high- and low-energy complexes of bound states are observed. The properties of the spectrum are analyzed depending on the coupling constant and the temperature.Comment: 16 pages, 3 figures, 3 table

    Renormalized energy of ground and first excited state of Fr\"{o}hlich polaron in the range of weak coupling

    Full text link
    Partial summing of infinite range of diagrams for the two-phonon mass operator of polaron described by Fr\"{o}hlich Hamiltonian is performed using the Feynman-Pines diagram technique. Renormalized spectral parameters of ground and first excited (phonon repeat) polaron state are accurately calculated for a weak electron-phonon coupling at T=0T=0 K. It is shown that the stronger electron-phonon interaction shifts the energy of both states into low-energy region of the spectra. The ground state stays stationary and the excited one decays at a bigger coupling constant.Comment: 12 pages, 5 figure

    Optimization of quantum cascade laser operation by geometric design of cascade active band in open and closed models

    Full text link
    Using the effective mass and rectangular potential approximations, the theory of electron dynamic conductivity is developed for the plane multilayer resonance tunnel structure placed into a constant electric field within the model of open nanosystem, and oscillator forces of quantum transitions within the model of closed nanosystem. For the experimentally produced quantum cascade laser with four-barrier active band of separate cascade, it is proven that just the theory of dynamic conductivity in the model of open cascade most adequately describes the radiation of high frequency electromagnetic field while the electrons transport through the resonance tunnel structure driven by a constant electric field.Comment: 10 pages, 2 figure

    Nonstoichiometry Role on the Properties of Quantum-Paraelectric Ceramics

    Get PDF
    Among the lead-free perovskite-structure materials, strontium titanate (SrTiO3—ST) and potassium tantalate (KTaO3—KT), pure or modified, are of particular importance. They are both quantum paraelectrics with high dielectric permittivity and low losses that can find application in tunable microwave devices due to a dependence of the permittivity on the electric field. Factors as Sr/Ti and K/Ta ratio in ST and KT ceramics, respectively, can alter the defect chemistry of these materials and affect the microstructure. Therefore, if properly understood, cation stoichiometry variation may be intentionally used to tailor the electrical response of electroceramics. The scientific and technological importance of the stoichiometry variation in ST and KT ceramics is reviewed and compared in this chapter. The differences in crystallographic phase assemblage, grain size, and dielectric properties are described in detail. Although sharing crystal chemical similarities, the effect of the stoichiometry is markedly different. Even if the variation of Sr/Ti and K/Ta ratios did not change the quantum-paraelectric nature of ST and KT, Sr excess impedes the grain growth and decreases the dielectric permittivity in ST ceramics, while K excess promotes the grain growth and increases the dielectric permittivity in KT ceramics

    Measuring optimiser performance on a conical barrier tree benchmark

    Get PDF
    The common method for testing metaheuristic optimisation algorithms is to benchmark against problem test suites. However, existing benchmark problems limit the ability to analyse algorithm performance due to their inherent complexity. This paper proposes a novel benchmark, BTB, whose member functions have known geometric properties and critical point topologies. A given function in the benchmark is a realisation of a specified barrier tree in which funnel and basin geometries, and values and locations of all critical points are predetermined. We investigate the behaviour of two metaheuristics, PSO and DE, on the simplest manifestations of the framework, ONECONE and TWOCONES, and relate algorithm performance to a downhill walker reference algorithm. We study success rate, defined as the probability of optimal basin attainment, and inter-basin mobility. We find that local PSO is the slowest optimiser on the unimodal ONECONE but surpasses global PSO in all TWOCONES problems instances below 70 dimensions. DE is the best optimiser when basin difference depths are large but performance degrades as the differences become smaller. LPSO is the superior algorithm in the more difficult case where basins have similar depth. DE consistently finds the optimum basin when the basins have equal size and a large depth difference in all dimensions below 100D; the performance of LPSO falls away abruptly beyond 70D

    Supersymmetric Barotropic FRW Model and Dark Energy

    Full text link
    Using the superfield approach we construct the n=2n=2 supersymmetric lagrangian for the FRW Universe with barotropic perfect fluid as matter field. The obtained supersymmetric algebra allowed us to take the square root of the Wheeler-DeWitt equation and solve the corresponding quantum constraint. This model leads to the relation between the vacuum energy density and the energy density of the dust matter.Comment: 11 pages, minor corrections, published versio

    Use shundingites in modern technologies

    Get PDF
    The ability to stand still in one place is important in a variety of activities of daily living. For persons with motion disorders, orthopaedic treatment, which changes geometric or biomechanical properties, can improve the individual'sposture and walking ability. Decisions on such treatment require insight in how posture and walking ability are aected, however, despite expectations based on experience, it is never a-priori known how a patient will react to a treatment. As this is very challenging to observe by the naked eye, engineering tools are increasingly employed to support clinical diagnostics and treatment planning. The development of predictive simulations allows for the evaluation of the eect of changed biomechanical parameters on the human biological system behavior and could become a valuable tool in future clinical decision making. In the first paper, we evaluated the use of the Zero Moment Point as a computationally inexpensive tool to obtain the ground reaction forces (GRFs) for normal human gait. The method was applied on ten healthy subjects walking in a motion analysis laboratory and predicted GRFs are evaluated against the simultaneously measured force plate data. Apart from the antero-posterior forces, GRFs are well-predicted and errors fall within the error ranges from other published methods. The computationally inexpensive method evaluated in this study can reasonably well predict the GRFs for normal human gait without using prior knowledge of common gait kinetics. The second manuscript addresses the complications in the creation and analysis of a posture prediction framework. The fmincon optimization function in MATLAB was used in conjunction with a musculoskeletal model in OpenSim. One clear local minimum was found in the form of a symmetric standing posture but perturbation analyses revealed the presence of many other postural congurations, each representing its own unique local minimum in the feasible parameter space. For human postural stance, this can translate to there being many different ways of standing without actually noticing a difference in the efforts required for these poses.This work was financially supported by the Swedish Scientic Council(Vetenskapsrådet) grant no. 2010-9401-79187-68, the ProMobilia handicapfoundation (ref. 13093), Sunnerdahls Handicap foundation (ansökan nr 11/14),and Norrbacka-Eugenia foundation (ansökan nr 218/15).</p
    corecore