109 research outputs found

    A sustainable reaction process for phase pure LiFeSi2O6 with goethite as an iron source

    Get PDF
    Lithium-iron methasilicate (LiFeSi2_{2}O6_{6}, LFS), a member of clinopyroxene family, is an attractive compound for its multiferroic properties and applicability in energy-related devices. Conventional preparative method requires heating at elevated temperatures for long periods of time, with inevitable severe grain growth. We demonstrate that α-FeO(OH) (goethite) is superior as an iron source toward phase pure LFS over conventional hematite, α-Fe2_{2}O3_{3}. The exact phase purity, i.e., no trace of iron containing reactant, is confirmed in the goethite-derived LFS by 57Fe Mössbauer spectroscopy. The grain growth of LFS during heating is suppressed to keep its crystallite size of 120 nm. Higher reactivity of goethite in comparison with hematite is mainly attributed to the dehydration of goethite, which in our case was accelerated by Li2_{2}O. Related reaction mechanisms with the possible product pre-nucleation during mechanical activation are also mentioned. The magnetic properties of goethite-derived LFS are equivalent to those prepared via a laborious solid-state route. Thus, the presented preparative method offers a more sustainable route than conventional processing, and thus enables practical application of LFS

    Elevated Pontine and Putamenal GABA Levels in Mild-Moderate Parkinson Disease Detected by 7 Tesla Proton MRS

    Get PDF
    Background: Parkinson disease (PD) is characterized by the degeneration of nigrostriatal dopaminergic neurons. However, postmortem evidence indicates that the pathology of lower brainstem regions, such as the pons and medulla, precedes nigral involvement. Consistently, pontomedullary damage was implicated by structural and PET imaging in early PD. Neurochemical correlates of this early pathological involvement in PD are unknown. Methodology/Principal Finding: To map biochemical alterations in the brains of individuals with mild-moderate PD we quantified neurochemical profiles of the pons, putamen and substantia nigra by 7 tesla (T) proton magnetic resonance spectroscopy. Thirteen individuals with idiopathic PD (Hoehn & Yahr stage 2) and 12 age- and gender-matched healthy volunteers participated in the study. c-Aminobutyric acid (GABA) concentrations in the pons and putamen were significantly higher in patients (N = 11, off medications) than controls (N = 11, p,0.001 for pons and p,0.05 for putamen). The GABA elevation was more pronounced in the pons (64%) than in the putamen (32%). No other neurochemical differences were observed between patients and controls. Conclusion/Significance: The GABA elevation in the putamen is consistent with prior postmortem findings in patients with PD, as well as with in vivo observations in a rodent model of PD, while the GABA finding in the pons is novel. The more significant GABA elevation in the pons relative to the putamen is consistent with earlier pathological involvement of th

    Proton MRS of the unilateral substantia nigra in the human brain at 4 tesla: Detection of high GABA concentrations

    Get PDF
    Parkinson's disease (PD) is characterized by loss of dopaminergic neurons in the substantia nigra (SN), the cause of which is unknown. Characterization of early SN pathology could prove beneficial in the treatment and diagnosis of PD. The present study shows that with the use of short-echo (5 ms) Stimulated-Echo Acquisition Mode (STEAM) spectroscopy and LCModel, a neurochemical profile consisting of 10 metabolites, including γ-aminobutyric acid (GABA), glutamate (Glu), and glutathione (GSH), can be measured from the unilateral SN at 4 tesla. The neurochemical profile of the SN is unique and characterized by a fourfold higher GABA/Glu ratio compared to the cortex, in excellent agreement with established neurochemistry. The presence of elevated GABA levels in SN was validated with the use of editing, suggesting that partial volume effects were greatly reduced. These findings establish the feasibility of obtaining a neurochemical profile of the unilateral human SN by single-voxel spectroscopy in small volumes. © 2006 Wiley-Liss, Inc

    Altered Neurocircuitry in the Dopamine Transporter Knockout Mouse Brain

    Get PDF
    The plasma membrane transporters for the monoamine neurotransmitters dopamine, serotonin, and norepinephrine modulate the dynamics of these monoamine neurotransmitters. Thus, activity of these transporters has significant consequences for monoamine activity throughout the brain and for a number of neurological and psychiatric disorders. Gene knockout (KO) mice that reduce or eliminate expression of each of these monoamine transporters have provided a wealth of new information about the function of these proteins at molecular, physiological and behavioral levels. In the present work we use the unique properties of magnetic resonance imaging (MRI) to probe the effects of altered dopaminergic dynamics on meso-scale neuronal circuitry and overall brain morphology, since changes at these levels of organization might help to account for some of the extensive pharmacological and behavioral differences observed in dopamine transporter (DAT) KO mice. Despite the smaller size of these animals, voxel-wise statistical comparison of high resolution structural MR images indicated little morphological change as a consequence of DAT KO. Likewise, proton magnetic resonance spectra recorded in the striatum indicated no significant changes in detectable metabolite concentrations between DAT KO and wild-type (WT) mice. In contrast, alterations in the circuitry from the prefrontal cortex to the mesocortical limbic system, an important brain component intimately tied to function of mesolimbic/mesocortical dopamine reward pathways, were revealed by manganese-enhanced MRI (MEMRI). Analysis of co-registered MEMRI images taken over the 26 hours after introduction of Mn^(2+) into the prefrontal cortex indicated that DAT KO mice have a truncated Mn^(2+) distribution within this circuitry with little accumulation beyond the thalamus or contralateral to the injection site. By contrast, WT littermates exhibit Mn^(2+) transport into more posterior midbrain nuclei and contralateral mesolimbic structures at 26 hr post-injection. Thus, DAT KO mice appear, at this level of anatomic resolution, to have preserved cortico-striatal-thalamic connectivity but diminished robustness of reward-modulating circuitry distal to the thalamus. This is in contradistinction to the state of this circuitry in serotonin transporter KO mice where we observed more robust connectivity in more posterior brain regions using methods identical to those employed here

    Variation in the Glucose Transporter gene <i>SLC2A2 </i>is associated with glycaemic response to metformin

    Get PDF
    Metformin is the first-line antidiabetic drug with over 100 million users worldwide, yet its mechanism of action remains unclear1. Here the Metformin Genetics (MetGen) Consortium reports a three-stage genome-wide association study (GWAS), consisting of 13,123 participants of different ancestries. The C allele of rs8192675 in the intron of SLC2A2, which encodes the facilitated glucose transporter GLUT2, was associated with a 0.17% (P = 6.6 × 10−14) greater metformin-induced reduction in hemoglobin A1c (HbA1c) in 10,577 participants of European ancestry. rs8192675 was the top cis expression quantitative trait locus (cis-eQTL) for SLC2A2 in 1,226 human liver samples, suggesting a key role for hepatic GLUT2 in regulation of metformin action. Among obese individuals, C-allele homozygotes at rs8192675 had a 0.33% (3.6 mmol/mol) greater absolute HbA1c reduction than T-allele homozygotes. This was about half the effect seen with the addition of a DPP-4 inhibitor, and equated to a dose difference of 550 mg of metformin, suggesting rs8192675 as a potential biomarker for stratified medicine

    Brain glutamate in anorexia nervosa: a magnetic resonance spectroscopy case control study at 7 Tesla

    Get PDF
    RATIONALE: Anorexia nervosa (AN) is a serious psychiatric disorder with high morbidity and mortality. There are no established pharmacological treatments and the neurobiology of the condition is poorly understood. Previous studies using magnetic resonance spectroscopy (MRS) have shown that AN may be associated with reductions in indices of brain glutamate; however, at conventional field strengths (≤3 T), it is difficult to separate glutamate from its precursor and metabolite, glutamine. OBJECTIVES: The objective of the present study was to use high field (7 T) MRS to measure concentrations of glutamate, in three separate brain voxels, in women with AN. METHODS: We studied 13 female participants with AN and 12 healthy female controls who underwent MRS scanning at 7 T with voxels placed in anterior cingulate cortex, occipital cortex and putamen. Neurometabolites were calculated using the unsuppressed water signal as a reference and corrected for individual cerebrospinal fluid concentration in the voxel. RESULTS: We found that participants with AN had significantly lower concentrations of glutamate in all three voxels (mean reduction 8%, p = 0.002) but glutamine levels were not altered. Concentrations of N-acetylaspartate, creatine, GABA and glutathione were also unchanged. However, inositol was lower in AN participants in anterior cingulate (p = 0.022) and occipital cortex (p = 0.002). CONCLUSIONS: Women with AN apparently have widespread reductions in brain glutamate. Further work will be needed to assess if this change has pathophysiological relevance or whether it is a consequence of the many physical changes produced in AN by food restriction

    Design and Modeling of an Experimental Hydraulic Device

    No full text
    The design of the experimental laboratory device is based on the construction of the hydraulic circuits of mobile devices. It is possible to ensure the repeatability of the flow characteristic measurements at the laboratory. This means that in the operating test it is possible to verify the flow characteristics of the hydraulic pump and these results are not affected by the change in the physical properties of the applied liquid. By comparing of the flow characteristics directly on the work equipment (mini-excavator, etc.), the disadvantage is the need for dismantling the hydraulic pump and its mounting on the laboratory device. In some working device removal is not possible, where dismantling is structurally difficult or is time consuming, which increases the cost of their operation.The proposed experimental laboratory device serves to verify the flow characteristics of the hydraulic pump and is also designed to be universal, to test external gear hydraulic pump and hydraulic pump with inclined plate
    corecore