5 research outputs found

    How lysimetric monitoring of Technosols can contribute to understand the temporal dynamics of the soil porosity

    No full text
    International audienceHighlights • Lysimetric monitoring of the water budget of a range of soils, including Technosols • Different hydrodynamics were visible as a function of both soils and time. • Temporal dynamics of water budget followed the seasonal climatic variations. • The most anthropised soils exhibited a decrease of their total water storage capacity. Soil poral architecture controls soil functioning and is submitted to temporal changes. The monitoring of soil structure dynamics is complicated by inherent technical constraints in its measurement that are either punctual or complex. In this study, four soils, from a natural one to incrementally anthropized (including three Technosols: Spolic Toxic, Terric Transportic, Spolic Garbic Hydric), have been studied. Seven 2-m3 lysimetric columns have been setup to compare planted and non-planted treatments over 3 to 6 years. Data on the water balance and the hydrodynamics were continuously acquired. Differences were observed between the various soils as a function of their texture. The presence of vegetation also led to significant differences, especially in hot periods, between the vegetated and the bare soils treatments: the amount of water stored into the soil was up to 210 L m− 2 higher for bare soil. Furthermore, the analysis of the “critical water storage capacity” highlighted differences in the hydrodynamics at two time scales. For vegetated soils, similar seasonal variations depending on the climatic conditions were observed for all soils, with higher SCRIT values in cold periods compared to hot periods (differences were up to 190 L m− 2). These results were attributed to roots development over the climatic year that decreases water storage capacity and increases preferential flows. Besides, significant trend evolution was also observed but only for the youngest i.e. the most anthropized soils. Their total water storage capacity decreased down to 52%. It is possibly due to soil compaction, the increase of pore connectivity related to root development and the formation of organo-mineral associations. Our work promotes the association of monitored lysimeters as tool and the study of soils within a gradient of anthropization in order to describe a pedogenetic process like the dynamics of soil porosity

    The use of radiocarbon 14 C to constrain carbon dynamics in the soil module of the land surface model ORCHIDEE (SVN r5165)

    No full text
    International audienceDespite the importance of soil as a large component of the terrestrial ecosystem, the soil compartments are not well represented in land surface models (LSMs). Indeed, soils in current LSMs are generally represented based on a very simplified schema that can induce a misrepresentation of the deep dynamics of soil carbon. Here, we present a new version of the Institut Pierre Simon Laplace (IPSL) LSM called ORCHIDEE-SOM (ORganizing Carbon and Hydrology in Dynamic EcosystEms-Soil Organic Matter), incorporating the C-14 dynamics into the soil. ORCHIDEE-SOM first simulates soil carbon dynamics for different layers, down to 2 m depth. Second, concentration of dissolved organic carbon and its transport are modelled. Finally, soil organic carbon decomposition is considered taking into account the priming effect. After implementing C-14 in the soil module of the model, we evaluated model outputs against observations of soil organic carbon and modern C-14 fraction ((FC)-C-14) for different sites with different characteristics. The model managed to reproduce the soil organic carbon stocks and the (FC)-C-14 along the vertical profiles for the sites examined. However, an overestimation of the total carbon stock was noted, primarily on the surface layer. Due to C-14, it is possible to probe carbon age in the soil, which was found to be underestimated. Thereafter, two different tests on this new version have been established. The first was to increase carbon residence time of the passive pool and decrease the flux from the slow pool to the passive pool. The second was to establish an equation of diffusion, initially constant throughout the profile, making it vary exponentially as a function of depth. The first modifications did not improve the capacity of the model to reproduce observations, whereas the second test improved both estimation of surface soil carbon stock as well as soil carbon age. This demonstrates that we should focus more on vertical variation in soil parameters as a function of depth, in order to upgrade the representation of the global carbon cycle in LSMs, thereby helping to improve predictions of the of soil organic carbon to environmental changes

    ORCHIDEE-MICT (v8.4.1), a land surface model for the high latitudes: model description and validation

    Get PDF
    International audienceThe high-latitude regions of the Northern Hemisphere are a nexus for the interaction between land surface physical properties and their exchange of carbon and energy with the atmosphere. At these latitudes, two carbon pools of planetary significance-those of the permanently frozen soils (permafrost), and of the great expanse of boreal forest-are vulnerable to destabilization in the face of currently observed climatic warming, the speed and intensity of which are expected to increase with time. Improved projections of future Arctic and boreal ecosystem transformation require improved land surface models that integrate processes specific to these cold biomes. To this end, this study lays out relevant new parameterizations in the ORCHIDEE-MICT land surface model. These describe the interactions between soil carbon, soil temperature and hydrology, and their resulting feedbacks on water and CO 2 fluxes, in addition to a recently developed fire module. Outputs from ORCHIDEE-MICT, when forced by two climate input datasets, are extensively evaluated against (i) temperature gradients between the atmosphere and deep soils, (ii) the hydrological components comprising the water balance of the largest high-latitude basins, and (iii) CO 2 flux and carbon stock observations. The model performance is good with respect to empirical data, despite a simulated excessive plant water stress and Published by Copernicus Publications on behalf of the European Geosciences Union. 122 M. Guimberteau et al.: ORCHIDEE-MICT, a LSM for the high latitudes a positive land surface temperature bias. In addition, acute model sensitivity to the choice of input forcing data suggests that the calibration of model parameters is strongly forcing-dependent. Overall, we suggest that this new model design is at the forefront of current efforts to reliably estimate future perturbations to the high-latitude terrestrial environment
    corecore