3,586 research outputs found
The neutral heavy scalar productions associated with in the littlest Higgs model at ILC and CLIC
In this work, the production processes of heavy neutral scalar and pseudo
scalar associated with standard model gauge boson at future
colliders (ILC and CLIC) are examined. The total and differential cross
sections are calculated for the processes in the context of the littlest Higgs
model. Also dependence of production processes to littlest Higgs model
parameters in the range of compatibility with electroweak precision
measurements and decays to lepton flavor violating final states are analyzed.
We have found that both heavy scalar and pseudoscalar will be produced in
colliders. Also the depending on the model parameters, the neutral
heavy scalar can be reconstructed or lepton flavor violating signals can be
observed.Comment: 16 pages, version in APP
Flavor Changing Neutral Currents Transition of the to Nucleon in Full QCD and Heavy Quark Effective Theory
The loop level flavor changing neutral currents transitions of the
and are investigated in full
QCD and heavy quark effective theory in the light cone QCD sum rules approach.
Using the most general form of the interpolating current for ,
or , as members of the recently discovered sextet heavy baryons with
spin 1/2 and containing one heavy quark, the transition form factors are
calculated using two sets of input parameters entering the nucleon distribution
amplitudes, namely, QCD sum rules and lattice QCD inputs. The obtained results
are used to estimate the decay rates of the corresponding transitions. Since
such type transitions occurred at loop level in the standard model, they can be
considered as good candidates to search for the new physics effects beyond the
SM.Comment: 18 Pages and 13 Table
A Study of Inclusive Double-Pomeron-Exchange in p pbar -> p X pbar at root s = 630 GeV
We report measurements of the inclusive reaction, p pbar -> p X pbar, in
events where either or both the beam-like final-state baryons were detected in
Roman-pot spectrometers and the central system was detected in the UA2
calorimeter. A Double-Pomeron-Exchange (DPE) analysis of these data and single
diffractive data from the same experiment demonstrates that, for central masses
of a few GeV, the extracted Pomeron-Pomeron total cross section exhibits an
enhancement which exceeds factorization expectations by an order-of-magnitude.
This may be a signature for glueball production. The enhancement is shown to be
independent of uncertainties connected with possible non-universality of the
Pomeron flux factor. Based on our analysis, we present DPE cross section
predictions, for unit (1 mb) Pomeron-Pomeron total cross section, at the
Tevatron, LHC and the 920 GeV fixed-target experiment, HERA-B.Comment: 52 pages, 27 Encapsulated Postscript figures, 3 Tables, LaTex,
Revised version as it will appear in European Physics Journal
Cross Section Measurements of Hard Diffraction at the SPS-Collider
The UA8 experiment previously reported the observation of jets in diffractive
events containing leading protons (``hard diffraction''), which was interpreted
as evidence for the partonic structure of an exchanged Reggeon, believed to be
the Pomeron . In the present Letter, we report the final UA8 hard-diffractive
(jet) cross section results and their interpretation. After corrections, the
fraction of single diffractive events with mass from 118 to 189 GeV that have
two scattered partons, each with Et_jet > 8 GeV, is in the range 0.002 to 0.003
(depending on x_p). We determine the product, fK, of the fraction by which the
Pomeron's momentum sum rule is violated and the normalization constant of the
Pomeron-Flux-Factor of the proton. For a pure gluonic- or a pure qqbar-Pomeron
, respectively: fK = 0.30 +- 0.05 +- 0.09) and (0.56 +- 0.09 +- 0.17) GeV^-2.Comment: 20 pages, 5 Encapsulated Postscript figures, LaTex, Final Version,
Physics Letters B (in Pess 1998
Constraints on Non-Commutative Physics Scale with Neutrino-Electron Scattering
Neutrino-electron scatterings () are purely leptonic processes with
robust Standard Model (SM) predictions. Their measurements can therefore
provide constraints to physics beyond SM. Non-commutative (NC) field theories
modify space-time commutation relations, and allow neutrino electromagnetic
couplings at the tree level. Their contribution to neutrino-electron scattering
cross-section was derived. Constraints were placed on the NC scale parameter
from experiments with reactor and accelerator
neutrinos. The most stringent limit of at 95%
confidence level improves over the direct bounds from collider experiments.Comment: 6 pages, 2 figures, 2 tables, V2: minor revisions to match published
versio
The Semileptonic to Decays in QCD Sum Rules
We analyze the semileptonic rare decays of meson to and
axial vector mesons. The
decays are significant flavor changing neutral current decays of the meson.
These decays are sensitive to the new physics beyond SM, since these processes
are forbidden at tree level at SM. These decays occurring at the quark level
via transition, also provide new opportunities for
calculating the CKM matrix elements and . In this study, the
transition form factors of the decays
are calculated using three-point QCD sum rules approach. The resulting form
factors are used to estimate the branching fractions of these decays.Comment: 18 pages, 7 figures, version to appear in JP
Measurement of Neutrino-Electron Scattering Cross-Section with a CsI(Tl) Scintillating Crystal Array at the Kuo-Sheng Nuclear Power Reactor
The elastic scattering cross-section was measured with
a CsI(Tl) scintillating crystal array having a total mass of 187kg. The
detector was exposed to an average reactor flux of
at the Kuo-Sheng Nuclear Power
Station. The experimental design, conceptual merits, detector hardware, data
analysis and background understanding of the experiment are presented. Using
29882/7369 kg-days of Reactor ON/OFF data, the Standard Model(SM) electroweak
interaction was probed at the squared 4-momentum transfer range of . The ratio of experimental to SM cross-sections
of was measured. Constraints on
the electroweak parameters were placed, corresponding to a weak
mixing angle measurement of \s2tw = 0.251 \pm 0.031({\it stat}) \pm
0.024({\it sys}) . Destructive interference in the SM \nuebar -e process was
verified. Bounds on anomalous neutrino electromagnetic properties were placed:
neutrino magnetic moment at \mu_{\nuebar}< 2.2 \times 10^{-10} \mu_{\rm B}
and the neutrino charge radius at -2.1 \times 10^{-32} ~{\rm cm^{2}} <
\nuchrad < 3.3 \times 10^{-32} ~{\rm cm^{2}}, both at 90% confidence level.Comment: 18 Figures, 7 Tables; published version as V2 with minor revision
from V
Constraints on Non-Standard Neutrino Interactions and Unparticle Physics with Neutrino-Electron Scattering at the Kuo-Sheng Nuclear Power Reactor
Neutrino-electron scatterings are purely leptonic processes with robust
Standard Model (SM) predictions. Their measurements can therefore provide
constraints to physics beyond SM. The \nuebar-e data taken at the Kuo-Sheng
Reactor Neutrino Laboratory were used to probe two scenarios: Non-Standard
Neutrino Interactions (NSI) and Unparticle Physics. New constraints were placed
to the NSI parameters (\el,\er) and (\etl,\etr) for the Non-Universal
and Flavor-Changing channels, respectively, as well as to the coupling
constants for scalar () and vector () unparticles to the
neutrinos and electrons.Comment: 8 pages, 6 figures, 1 table ; Published Version in V2 with minor
revision
- …