99 research outputs found

    ClpXP protease targets long-lived DNA translocation states of a helicase-like motor to cause restriction alleviation

    Get PDF
    We investigated how Escherichia coli ClpXP targets the helicase-nuclease (HsdR) subunit of the bacterial Type I restriction–modification enzyme EcoKI during restriction alleviation (RA). RA is a temporary reduction in endonuclease activity that occurs when Type I enzymes bind unmodified recognition sites on the host genome. These conditions arise upon acquisition of a new system by a naïve host, upon generation of new sites by genome rearrangement/mutation or during homologous recombination between hemimethylated DNA. Using recombinant DNA and proteins in vitro, we demonstrate that ClpXP targets EcoKI HsdR during dsDNA translocation on circular DNA but not on linear DNA. Protein roadblocks did not activate HsdR proteolysis. We suggest that DNA translocation lifetime, which is elevated on circular DNA relative to linear DNA, is important to RA. To identify the ClpX degradation tag (degron) in HsdR, we used bioinformatics and biochemical assays to design N- and C-terminal mutations that were analysed in vitro and in vivo. None of the mutants produced a phenotype consistent with loss of the degron, suggesting an as-yet-unidentified recognition pathway. We note that an EcoKI nuclease mutant still produces cell death in a clpx(−) strain, consistent with DNA damage induced by unregulated motor activity

    Re-evaluating the kinetics of ATP hydrolysis during initiation of DNA sliding by Type III restriction enzymes

    Get PDF
    DNA cleavage by the Type III restriction enzymes requires long-range protein communication between recognition sites facilitated by thermally-driven 1D diffusion. This ‘DNA sliding’ is initiated by hydrolysis of multiple ATPs catalysed by a helicase-like domain. Two distinct ATPase phases were observed using short oligoduplex substrates; the rapid consumption of ∼10 ATPs coupled to a protein conformation switch followed by a slower phase, the duration of which was dictated by the rate of dissociation from the recognition site. Here, we show that the second ATPase phase is both variable and only observable when DNA ends are proximal to the recognition site. On DNA with sites more distant from the ends, a single ATPase phase coupled to the conformation switch was observed and subsequent site dissociation required little or no further ATP hydrolysis. The overall DNA dissociation kinetics (encompassing site release, DNA sliding and escape via a DNA end) were not influenced by the second phase. Although the data simplifies the ATP hydrolysis scheme for Type III restriction enzymes, questions remain as to why multiple ATPs are hydrolysed to prepare for DNA sliding

    The single polypeptide restriction–modification enzyme LlaGI is a self-contained molecular motor that translocates DNA loops

    Get PDF
    To cleave DNA, the single polypeptide restriction–modification enzyme LlaGI must communicate between a pair of indirectly repeated recognition sites. We demonstrate that this communication occurs by a 1-dimensional route, namely unidirectional dsDNA loop translocation rightward of the specific recognition sequence 5′-CTnGAyG-3′ as written (where n is either A, G, C or T and y is either C or T). Motion across thousands of base pairs is catalysed by the helicase domain and requires the hydrolysis of 1.5-2 ATP per base pair. DNA loop extrusion is accompanied by changes in DNA twist consistent with the motor following the helical pitch of the polynucleotide track. LlaGI is therefore an example of a polypeptide that is a completely self-contained, multi-functional molecular machine

    DNA cleavage and methylation specificity of the single polypeptide restriction–modification enzyme LlaGI

    Get PDF
    LlaGI is a single polypeptide restriction–modification enzyme encoded on the naturally-occurring plasmid pEW104 isolated from Lactococcus lactis ssp. cremoris W10. Bioinformatics analysis suggests that the enzyme contains domains characteristic of an mrr endonuclease, a superfamily 2 DNA helicase and a γ-family adenine methyltransferase. LlaGI was expressed and purified from a recombinant clone and its properties characterised. An asymmetric recognition sequence was identified, 5′-CTnGAyG-3′ (where n is A, G, C or T and y is C or T). Methylation of the recognition site occurred on only one strand (the non-degenerate dA residue of 5′-CrTCnAG-3′ being methylated at the N6 position). Double strand DNA breaks at distant, random sites were only observed when two head-to-head oriented, unmethylated copies of the site were present; single sites or pairs in tail-to-tail or head-to-tail repeat only supported a DNA nicking activity. dsDNA nuclease activity was dependent upon the presence of ATP or dATP. Our results are consistent with a directional long-range communication mechanism that is necessitated by the partial site methylation. In the accompanying manuscript [Smith et al. (2009) The single polypeptide restriction–modification enzyme LlaGI is a self-contained molecular motor that translocates DNA loops], we demonstrate that this communication is via 1-dimensional DNA loop translocation. On the basis of this data and that in the third accompanying manuscript [Smith et al. (2009) An Mrr-family nuclease motif in the single polypeptide restriction–modification enzyme LlaGI], we propose that LlaGI is the prototype of a new sub-classification of Restriction-Modification enzymes, named Type I SP (for Single Polypeptide)

    CRISPR-Cas12a-mediated DNA clamping triggers target-strand cleavage

    Get PDF
    Clustered regularly interspaced short palindromic repeats (CRISPR)–Cas12a is widely used for genome editing and diagnostics, so it is important to understand how RNA-guided DNA recognition activates the cleavage of the target strand (TS) following non-target-strand (NTS) cleavage. Here we used single-molecule magnetic tweezers, gel-based assays and nanopore sequencing to explore DNA unwinding and cleavage. In addition to dynamic and heterogenous R-loop formation, we also directly observed transient double-stranded DNA unwinding downstream of the 20-bp heteroduplex and, following NTS cleavage, formation of a hyperstable ‘clamped’ Cas12a–DNA intermediate necessary for TS cleavage. Annealing of a 4-nucleotide 3′ CRISPR RNA overhang to the unwound TS downstream of the heteroduplex inhibited clamping and slowed TS cleavage by ~16-fold. Alanine substitution of a conserved aromatic amino acid in the REC2 subdomain that normally caps the R-loop relieved this inhibition but favoured stabilisation of unwound states, suggesting that the REC2 subdomain regulates access of the 3′ CRISPR RNA to downstream DNA. [Image: see text

    ENDO-Pore:high-throughput linked-end mapping of single DNA cleavage events using nanopore sequencing

    Get PDF
    Mapping the precise position of DNA cleavage events plays a key role in determining the mechanism and function of endonucleases. ENDO-Pore is a high-throughput nanopore-based method that allows the time resolved mapping single molecule DNA cleavage events in vitro. Following linearisation of a circular DNA substrate by the endonuclease, a resistance cassette is ligated recording the position of the cleavage event. A library of single cleavage events is constructed and subjected to rolling circle amplification to generate concatemers. These are sequenced and used to produce accurate consensus sequences. To identify the cleavage site(s), we developed CSI (Cleavage Site Investigator). CSI recognizes the ends of the cassette ligated into the cleaved substrate and triangulates the position of the dsDNA break. We firstly benchmarked ENDO-Pore using Type II restriction endonucleases. Secondly, we analysed the effect of crRNA length on the cleavage pattern of CRISPR Cas12a. Finally, we mapped the time-resolved DNA cleavage by the Type ISP restriction endonuclease LlaGI that introduces random double-strand breaks into its DNA substrates

    Type III restriction endonucleases are heterotrimeric:comprising one helicase-nuclease subunit and a dimeric methyltransferase that binds only one specific DNA

    Get PDF
    Fundamental aspects of the biochemistry of Type III restriction endonucleases remain unresolved despite being characterized by numerous research groups in the past decades. One such feature is the subunit stoichiometry of these hetero-oligomeric enzyme complexes, which has important implications for the reaction mechanism. In this study, we present a series of results obtained by native mass spectrometry and size exclusion chromatography with multi-angle light scattering consistent with a 1:2 ratio of Res to Mod subunits in the EcoP15I, EcoPI and PstII complexes as the main holoenzyme species and a 1:1 stoichiometry of specific DNA (sDNA) binding by EcoP15I and EcoPI. Our data are also consistent with a model where ATP hydrolysis activated by recognition site binding leads to release of the enzyme from the site, dissociation from the substrate via a free DNA end and cleavage of the DNA. These results are discussed critically in the light of the published literature, aiming to resolve controversies and discuss consequences in terms of the reaction mechanism

    S-Adenosyl homocysteine and DNA ends stimulate promiscuous nuclease activities in the Type III restriction endonuclease EcoPI

    Get PDF
    In the absence of the methyl donor S-adenosyl methionine and under certain permissive reaction conditions, EcoPI shows non-specific endonuclease activity. We show here that the cofactor analogue S-adenosyl homocysteine promotes this promiscuous DNA cleavage. Additionally, an extensive exonuclease-like processing of the DNA is also observed that can even result in digestion of non-specific DNA in trans. We suggest a model for how DNA communication events initiating from non-specific sites, and in particular free DNA ends, could produce the observed cleavage patterns

    Translocation-independent dimerization of the EcoKI endonuclease visualized by atomic force microscopy

    Get PDF
    AbstractBacterial type I restriction/modification systems are capable of performing multiple actions in response to the methylation pattern on their DNA recognition sequences. The enzymes making up these systems serve to protect the bacterial cells against viral infection by binding to their recognition sequences on the invading DNA and degrading it after extensive ATP-driven translocation. DNA cleavage has been thought to occur as the result of a collision between two translocating enzyme complexes. Using atomic force microscopy (AFM), we show here that EcoKI dimerizes rapidly when bound to a plasmid containing two recognition sites for the enzyme. Dimerization proceeds in the absence of ATP and is also seen with an EcoKI mutant (K477R) that is unable to translocate DNA. Only monomers are seen when the enzyme complex binds to a plasmid containing a single recognition site. Based on our results, we propose that the binding of EcoKI to specific DNA target sequences is accompanied by a conformational change that leads rapidly to dimerization. This event is followed by ATP-dependent translocation and cleavage of the DNA
    corecore