262 research outputs found

    Two-dimensional NMR lineshape analysis

    Get PDF
    NMR titration experiments are a rich source of structural, mechanistic, thermodynamic and kinetic information on biomolecular interactions, which can be extracted through the quantitative analysis of resonance lineshapes. However, applications of such analyses are frequently limited by peak overlap inherent to complex biomolecular systems. Moreover, systematic errors may arise due to the analysis of two-dimensional data using theoretical frameworks developed for one-dimensional experiments. Here we introduce a more accurate and convenient method for the analysis of such data, based on the direct quantum mechanical simulation and fitting of entire two-dimensional experiments, which we implement in a new software tool, TITAN (TITration ANalysis). We expect the approach, which we demonstrate for a variety of protein-protein and protein-ligand interactions, to be particularly useful in providing information on multi-step or multi-component interactions

    Differential Encoding of Factors Influencing Predicted Reward Value in Monkey Rostral Anterior Cingulate Cortex

    Get PDF
    Background: The value of a predicted reward can be estimated based on the conjunction of both the intrinsic reward value and the length of time to obtain it. The question we addressed is how the two aspects, reward size and proximity to reward, influence the responses of neurons in rostral anterior cingulate cortex (rACC), a brain region thought to play an important role in reward processing. Methods and Findings: We recorded from single neurons while two monkeys performed a multi-trial reward schedule task. The monkeys performed 1–4 sequential color discrimination trials to obtain a reward of 1–3 liquid drops. There were two task conditions, a valid cue condition, where the number of trials and reward amount were associated with visual cues, and a random cue condition, where the cue was picked from the cue set at random. In the valid cue condition, the neuronal firing is strongly modulated by the predicted reward proximity during the trials. Information about the predicted reward amount is almost absent at those times. In substantial subpopulations, the neuronal responses decreased or increased gradually through schedule progress to the predicted outcome. These two gradually modulating signals could be used to calculate the effect of time on the perception of reward value. In the random cue condition, little information about the reward proximity or reward amount is encoded during the course of the trial before reward delivery, but when the reward is actually delivered the responses reflect both the reward proximity and reward amount

    Mathematical treatment of adiabatic fast passage pulses for the computation of nuclear spin relaxation rates in proteins with conformational exchange

    Get PDF
    Although originally designed for broadband inversion and decoupling in NMR spectroscopy, recent methodological developments have introduced adiabatic fast passage (AFP) pulses into the field of protein dynamics. AFP pulses employ a frequency sweep, and have not only superior inversion properties with respect to offset effects, but they are also easily implemented into a pulse sequence. As magnetization is dragged from the +z to the −z direction, Larmor precession is impeded since magnetization becomes spin-locked, which is a potentially useful feature for the investigation of microsecond to millisecond dynamics. A major drawback of these pulses as theoretical prediction is concerned, however, results from their time-dependent offset: simulations of spin density matrices under the influence of a time-dependent Hamiltonian with non-commuting elements are costly in terms of computational time, rendering data analysis impracticable. In this paper we suggest several ways to reduce the computational time without compromising accuracy with respect to effects such as cross-correlated relaxation and modulation of the chemical shift

    Touchdown General Primer (GP5+/GP6+) PCR and optimized sample DNA concentration support the sensitive detection of human papillomavirus

    Get PDF
    BACKGROUND: The GP5+/GP6+ PCR assay is a well-established HPV detection technique. This study has examined the effects of incorporating 'hot start' and 'touchdown' steps into the protocol. In addition, dTTP was substituted with dUTP to permit contamination control measures against carry-over PCR product. METHODS: Firstly, HPV-16 was amplified from SiHa cell DNA (0.1 ng–100 ng) diluted in a background of C-33A DNA (100 ng-2 μg). Secondly, the detection of small quantities (15ag-1.5pg) of HPV recombinant plasmids (types 16, 31, 33, 45, 51, 52, and 56) diluted in C-33A DNA was investigated. Thirdly, clinical sample DNA extracts (cervical smears, formalin-fixed vaginal lesions and breast tumors) were tested for HPV. Six different PCR protocols were assessed. HPV was detected by gel electrophoresis, and by Southern and dot blot hybridization. RESULTS: HPV detection sensitivity was dependent on the total amount of DNA in a PCR. Touchdown protocols supported HPV-16 detection from 1 ng or 0.5 ng SiHa cell DNA in a background of 2 μg or 1 μg C-33A DNA respectively, and from 0.1 ng of SiHa cell DNA (~28 copies HPV-16) in 500 ng or 100 ng background DNA. Under standard GP5+/GP6+ annealing conditions, HPV-16 went undetected when the DNA content of a PCR was 2 μg or 1 μg, and with 500 ng C-33A DNA the sensitivity limit was 1 ng SiHa cell DNA. HPV recombinant plasmids were each detected with high (albeit varying) sensitivity by a touchdown protocol. HPV-31 was better amplified under standard annealing conditions (1.5fg in 100 ng background DNA) than by a touchdown approach (15fg detection limit). HPV-52 was not amplified by the standard protocol at the dilutions tested. Seventeen different HPV types were demonstrated in 47/65 (72%) abnormal cytology samples recorded as HPV negative by standard GP5+/GP6+ conditions. Twenty-one different HPV types were recorded in 111/114 (97%) vaginal lesions. Multiple infections were also detectable using a touchdown approach. Of 26 breast tumors, 5 (19%) tested HPV positive by the standard assay and 15/26 (58%) using a touchdown protocol. CONCLUSION: Touchdown modification of the GP5+/GP6+ PCR assay enables the detection of HPV undetected under regular assay conditions. The use of standardized DNA quantities in a PCR rather than standard sample volumes containing arbitrary amounts of DNA is supported. A touchdown approach may be beneficial as an analytical test for the re-evaluation of (apparently) HPV negative abnormal cervical cytological or histological samples, and for investigating the association of HPV with disease conditions at diverse organ sites. The clinical utility of a touchdown approach for HPV detection requires further investigation as increased assay analytical sensitivity may not necessarily equate with improved clinical sensitivity or specificity

    Intrinsic Order and Disorder in the Bcl-2 Member Harakiri: Insights into Its Proapoptotic Activity

    Get PDF
    Harakiri is a BH3-only member of the Bcl-2 family that localizes in membranes and induces cell death by binding to prosurvival Bcl-xL and Bcl-2. The cytosolic domain of Harakiri is largely disorder with residual α-helical conformation according to previous structural studies. As these helical structures could play an important role in Harakiri's function, we have used NMR and circular dichroism to fully characterize them at the residue-atomic level. In addition, we report structural studies on a peptide fragment spanning Harakiri's C-terminal hydrophobic sequence, which potentially operates as a transmembrane domain. We initially checked by enzyme immunoassays and NMR that peptides encompassing different lengths of the cytosolic domain are functional as they bind Bcl-xL and Bcl-2. The structural data in water indicate that the α-helical conformation is restricted to a 25-residue segment comprising the BH3 domain. However, structure calculation was precluded because of insufficient NMR restraints. To bypass this problem we used alcohol-water mixture to increase structure population and confirmed by NMR that the conformation in both milieus is equivalent. The resulting three-dimensional structure closely resembles that of peptides encompassing the BH3 domain of BH3-only members in complex with their prosurvival partners, suggesting that preformed structural elements in the disordered protein are central to binding. In contrast, the transmembrane domain forms in micelles a monomeric α-helix with a population close to 100%. Its three-dimensional structure here reported reveals features that explain its function as membrane anchor. Altogether these results are used to propose a tentative structural model of how Harakiri works

    Characterization of a Novel Interaction between Bcl-2 Members Diva and Harakiri

    Get PDF
    Interactions within proteins of the Bcl-2 family are key in the regulation of apoptosis. The death-inducing members control apoptotic mechanisms partly by antagonizing the prosurvival proteins through heterodimer formation. Structural and biophysical studies on these complexes are providing important clues to understand their function. To help improve our knowledge on protein-protein interactions within the Bcl-2 family we have studied the binding between two of its members: mouse Diva and human Harakiri. Diva has been shown to perform both prosurvival and killing activity. In contrast, Harakiri induces cell death by interacting with antiapoptotic Bcl-2 members. Here we show using ELISA and NMR that Diva and Harakiri can interact in vitro. Combining the NMR data with the previously reported three-dimensional structure of Diva we find that Harakiri binds to a specific region in Diva. This interacting surface is equivalent to the known binding area of prosurvival Bcl-2 members from the reported structures of the complexes, suggesting that Diva could function at the structural level similarly to the antiapoptotic proteins of the Bcl-2 family. We illustrate this result by building a structural model of the heterodimer using molecular docking and the NMR data as restraints. Moreover, combining circular dichroism and NMR we also show that Harakiri is largely unstructured with residual (13%) α-helical conformation. This result agrees with intrinsic disorder previously observed in other Bcl-2 members. In addition, Harakiri constructs of different length were studied to identify the region critical for the interaction. Differential affinity for Diva of these constructs suggests that the amino acid sequence flanking the interacting region could play an important role in binding

    Intrinsic Order and Disorder in the Bcl-2 Member Harakiri: Insights into Its Proapoptotic Activity

    Get PDF
    Harakiri is a BH3-only member of the Bcl-2 family that localizes in membranes and induces cell death by binding to prosurvival Bcl-xL and Bcl-2. The cytosolic domain of Harakiri is largely disorder with residual α-helical conformation according to previous structural studies. As these helical structures could play an important role in Harakiri's function, we have used NMR and circular dichroism to fully characterize them at the residue-atomic level. In addition, we report structural studies on a peptide fragment spanning Harakiri's C-terminal hydrophobic sequence, which potentially operates as a transmembrane domain. We initially checked by enzyme immunoassays and NMR that peptides encompassing different lengths of the cytosolic domain are functional as they bind Bcl-xL and Bcl-2. The structural data in water indicate that the α-helical conformation is restricted to a 25-residue segment comprising the BH3 domain. However, structure calculation was precluded because of insufficient NMR restraints. To bypass this problem we used alcohol-water mixture to increase structure population and confirmed by NMR that the conformation in both milieus is equivalent. The resulting three-dimensional structure closely resembles that of peptides encompassing the BH3 domain of BH3-only members in complex with their prosurvival partners, suggesting that preformed structural elements in the disordered protein are central to binding. In contrast, the transmembrane domain forms in micelles a monomeric α-helix with a population close to 100%. Its three-dimensional structure here reported reveals features that explain its function as membrane anchor. Altogether these results are used to propose a tentative structural model of how Harakiri works

    Representational Switching by Dynamical Reorganization of Attractor Structure in a Network Model of the Prefrontal Cortex

    Get PDF
    The prefrontal cortex (PFC) plays a crucial role in flexible cognitive behavior by representing task relevant information with its working memory. The working memory with sustained neural activity is described as a neural dynamical system composed of multiple attractors, each attractor of which corresponds to an active state of a cell assembly, representing a fragment of information. Recent studies have revealed that the PFC not only represents multiple sets of information but also switches multiple representations and transforms a set of information to another set depending on a given task context. This representational switching between different sets of information is possibly generated endogenously by flexible network dynamics but details of underlying mechanisms are unclear. Here we propose a dynamically reorganizable attractor network model based on certain internal changes in synaptic connectivity, or short-term plasticity. We construct a network model based on a spiking neuron model with dynamical synapses, which can qualitatively reproduce experimentally demonstrated representational switching in the PFC when a monkey was performing a goal-oriented action-planning task. The model holds multiple sets of information that are required for action planning before and after representational switching by reconfiguration of functional cell assemblies. Furthermore, we analyzed population dynamics of this model with a mean field model and show that the changes in cell assemblies' configuration correspond to those in attractor structure that can be viewed as a bifurcation process of the dynamical system. This dynamical reorganization of a neural network could be a key to uncovering the mechanism of flexible information processing in the PFC

    Manipulating Protein Conformations By Single-molecule Afm-fret Nanoscopy

    Get PDF
    Combining atomic force microscopy and fluorescence resonance energy transfer spectroscopy (AFM-FRET), we have developed a single-molecule AFM-FRET nanoscopy approach capable of effectively pinpointing and mechanically manipulating a targeted dye-labeled single protein in a large sampling area and simultaneously monitoring the conformational changes of the targeted protein by recording single-molecule FRET time trajectories. We have further demonstrated an application of using this nanoscopy on manipulation of single-molecule protein conformation and simultaneous single-molecule FRET measurement of a Cy3-Cy5-labeled kinase enzyme, HPPK (6-hydroxymethyl-7,8-dihydropterin pyrophosphokinase). By analyzing time-resolved FRET trajectories and correlated AFM force pulling curves of the targeted single-molecule enzyme, we are able to observe the protein conformational changes of a specific coordination by AFM mechanic force pulling

    Dynamic Surface Activity by Folding and Unfolding an Amphiphilic α-Helix

    Get PDF
    We describe a rationally designed peptide with tunable surface activity, where the dynamics of surface activity are an outcome of helical folding. Our rationally designed model peptide is surface-active only as an α-helix. We apply circular dichroism to show that the folded population can be controlled with changes in electrolyte concentration, and we apply pendant bubble tensiometry to explore dynamic surfactant activity. This study shows a peptide that responds to environmental stimuli with dynamic folding and surface activity. Extending this concept to selective binding peptides will lead to new tools, where dynamic surface activity is coupled to targeted binding
    • …
    corecore