275 research outputs found

    Range-Wide Sex-Chromosome Sequence Similarity Supports Occasional XY Recombination in European Tree Frogs (Hyla arborea).

    Get PDF
    In contrast with mammals and birds, most poikilothermic vertebrates feature structurally undifferentiated sex chromosomes, which may result either from frequent turnovers, or from occasional events of XY recombination. The latter mechanism was recently suggested to be responsible for sex-chromosome homomorphy in European tree frogs (Hyla arborea). However, no single case of male recombination has been identified in large-scale laboratory crosses, and populations from NW Europe consistently display sex-specific allelic frequencies with male-diagnostic alleles, suggesting the absence of recombination in their recent history. To address this apparent paradox, we extended the phylogeographic scope of investigations, by analyzing the sequences of three sex-linked markers throughout the whole species distribution. Refugial populations (southern Balkans and Adriatic coast) show a mix of X and Y alleles in haplotypic networks, and no more within-individual pairwise nucleotide differences in males than in females, testifying to recurrent XY recombination. In contrast, populations of NW Europe, which originated from a recent postglacial expansion, show a clear pattern of XY differentiation; the X and Y gametologs of the sex-linked gene Med15 present different alleles, likely fixed by drift on the front wave of expansions, and kept differentiated since. Our results support the view that sex-chromosome homomorphy in H. arborea is maintained by occasional or historical events of recombination; whether the frequency of these events indeed differs between populations remains to be clarified

    Profound genetic divergence and asymmetric parental genome contributions as hallmarks of hybrid speciation in polyploid toads.

    Get PDF
    The evolutionary causes and consequences of allopolyploidization, an exceptional pathway to instant hybrid speciation, are poorly investigated in animals. In particular, when and why hybrid polyploids versus diploids are produced, and constraints on sources of paternal and maternal ancestors, remain underexplored. Using the Palearctic green toad radiation (including bisexually reproducing species of three ploidy levels) as model, we generate a range-wide multi-locus phylogeny of 15 taxa and present four new insights: (i) at least five (up to seven) distinct allotriploid and allotetraploid taxa have evolved in the Pleistocene; (ii) all maternal and paternal ancestors of hybrid polyploids stem from two deeply diverged nuclear clades (6 Mya, 3.1-9.6 Mya), with distinctly greater divergence than the parental species of diploid hybrids found at secondary contact zones; (iii) allotriploid taxa possess two conspecific genomes and a deeply diverged allospecific one, suggesting that genomic imbalance and divergence are causal for their partly clonal reproductive mode; (iv) maternal versus paternal genome contributions exhibit asymmetry, with the maternal nuclear (and mitochondrial) genome of polyploids always coming from the same clade, and the paternal genome from the other. We compare our findings with similar patterns in diploid/polyploid vertebrates, and suggest deep ancestral divergence as a precondition for successful allopolyploidization

    Phylogeography of a widespread terrestrial vertebrate in a barely-studied Palearctic region: green toads (Bufo viridis subgroup) indicate glacial refugia in Eastern Central Asia.

    Get PDF
    The phylogeography of western Palearctic species is relatively well studied, but data on Eastern Central Asia are scarce. We present one of the first data sets from a widespread terrestrial vertebrate (Bufo pewzowi) inhabiting Eastern Central Asian mountains and deserts to gain knowledge on its phylogeography in this region. We applied combined phylogenetic and demographic analyses to understand the evolutionary history using mitochondrial DNA D-loop variation of toads from 37 locations. Genetic structure of Bufo pewzowi is strongly affected by landscape: we found three haplotype groups in eastern Kazakhstan, Dzungaria and Tarim Basin, divided by the Tian Shan and Dzungarian Alatau ranges. A vicariant hypothesis may explain divergence among groups. The divergence time of the three major clades was estimated about 0.9 million years ago (confidence interval 0.5-1.4), and is discussed with respect to Quaternary uplifting and glaciation in the Tian Shan. Demographic analyses provided evidence for both historical bottlenecks and population expansions and suggested Pleistocene signatures. Glacial refugia were inferred in the Tarim Basin (around the Turpan depression), in southern Dzungaria (Urumqui region), at the northern foot of the Tian Shan (Gongnaisi) and perhaps at the Altai range (Terekti). Regional Post-Last Glacial Maximum dispersal patterns are proposed. A taxonomic hypothesis is presented. This study provides a detailed history of how a widespread terrestrial vertebrate responded to geological change and Quaternary glacial events in Eastern Central Asia and may have significance for future phylogeographic research in this understudied region

    Evolution of mitochondrial relationships and biogeography of Palearctic green toads (Bufo viridis subgroup) with insights in their genomic plasticity.

    Get PDF
    Taxa involving three bisexually reproducing ploidy levels make green toads a unique amphibian system. We put a cytogenetic dataset from Central Asia in a molecular framework and apply phylogenetic and demographic methods to data from the entire Palearctic range. We study the mitochondrial relationships of diploids to infer their phylogeography and the maternal ancestry of polyploids. Control regions (and tRNAs between ND1 and ND2 in representatives) characterize a deeply branched assemblage of twelve haplotype groups, diverged since the Lower Miocene. Polyploidy has evolved several times: Central Asian tetraploids (B. oblongus, B. pewzowi) have at least two maternal origins. Intriguingly, the mitochondrial ancestor of morphologically distinctive, sexually reproducing triploid taxa (B. pseudoraddei) from Karakoram and Hindukush represents a different lineage. We report another potential case of bisexual triploid toads (B. zugmayeri). Identical d-loops in diploids and tetraploids from Iran and Turkmenistan, which differ in morphology, karyotypes and calls, suggest multiple origins and retained polymorphism and/or hybridization. A similar system involves diploids, triploids and tetraploids from Kyrgyzstan and Kazakhstan where green toads exemplify vertebrate genomic plasticity. A new form from Sicily and its African sister species (B. boulengeri) allow internal calibration and divergence time estimates for major clades. The subgroup may have originated in Eurasia rather than Africa since the earliest diverged lineages (B. latastii, B. surdus) and earliest fossils occur in Asia. We delineate ranges, contact and hybrid zones. Phylogeography, including one of the first non-avian datasets from Central Asian high mountains, reflects Quaternary climate and glaciation

    Post-Messinian evolutionary relationships across the Sicilian channel: Mitochondrial and nuclear markers link a new green toad from Sicily to African relatives

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Little attention has been paid to the consequences of the last landbridge between Africa and Sicily on Mediterranean biogeography. Previous paleontological and scarce molecular data suggest possible faunal exchange later than the well-documented landbridge in the Messinian (5.3 My); however, a possible African origin of recent terrestrial Sicilian fauna has not been thoroughly tested with molecular methods. To gain insight into the phylogeography of the region, we examine two mitochondrial and two nuclear markers (one is a newly adapted intron marker) in green toads (<it>Bufo viridis </it>subgroup) across that sea barrier, the Strait of Sicily.</p> <p>Results</p> <p>Extensive sampling throughout the western Mediterranean and North Africa revealed a deep sister relationship between Sicilian (<it>Bufo siculus </it>n.sp.) and African green toads (<it>B. boulengeri</it>) on the mitochondrial and nuclear level. Divergence times estimated under a Bayesian-coalescence framework (mtDNA control region and 16S rRNA) range from the Middle Pliocene (3.6 My) to Pleistocene (0.16 My) with an average (1.83 to 2.0 My) around the Pliocene/Pleistocene boundary, suggesting possible land connections younger than the Messinian (5.3 My). We describe green toads from Sicily and some surrounding islands as a new endemic species (<it>Bufo siculus</it>). <it>Bufo balearicus </it>occurs on some western Mediterranean islands (Corsica, Sardinia, Mallorca, and Menorca) and the Apennine Peninsula, and is well differentiated on the mitochondrial and nuclear level from <it>B. siculus </it>as well as from <it>B. viridis </it>(Laurenti), whose haplotype group reaches northeastern Italy, north of the Po River. Detection of Calabrian <it>B. balearicus </it>haplotypes in northeastern Sicily suggests recent invasion. Our data agree with paleogeographic and fossil data, which suggest long Plio-Pleistocene isolation of Sicily and episodic Pleistocene faunal exchange across the Strait of Messina. It remains unknown whether both species (<it>B. balearicus, B. siculus</it>) occur in sympatry in northern Sicily.</p> <p>Conclusion</p> <p>Our findings on green toads give the first combined mitochondrial and nuclear sequence evidence for a phylogeographic connection across the Strait of Sicily in terrestrial vertebrates. These relationships may have implications for comparative phylogeographic research on other terrestrial animals co-occurring in North Africa and Sicily.</p

    Diversity of immunoglobulin light chain genes in non-teleost ray-finned fish uncovers IgL subdivision into five ancient isotypes

    Get PDF
    <p>The aim of this study was to fill important gaps in the evolutionary history of immunoglobulins by examining the structure and diversity of IgL genes in non-teleost ray-finned fish. First, based on the bioinformatic analysis of recent transcriptomic and genomic resources, we experimentally characterized the IgL genes in the chondrostean fish, Acipenser ruthenus (sterlet). We show that this species has three loci encoding IgL kappa-like chains with a translocon-type gene organization and a single VJC cluster, encoding homogeneous lambda-like light chain. In addition, sterlet possesses sigma-like VL and J-CL genes, which are transcribed separately and both encode protein products with cleavable leader peptides. The Acipenseriformes IgL dataset was extended by the sequences mined in the databases of species belonging to other non-teleost lineages of ray-finned fish: Holostei and Polypteriformes. Inclusion of these new data into phylogenetic analysis showed a clear subdivision of IgL chains into five groups. The isotype described previously as the teleostean IgL lambda turned out to be a kappa and lambda chain paralog that emerged before the radiation of ray-finned fish. We designate this isotype as lambda-2. The phylogeny also showed that sigma-2 IgL chains initially regarded as specific for cartilaginous fish are present in holosteans, polypterids, and even in turtles. We conclude that there were five ancient IgL isotypes, which evolved differentially in various lineages of jawed vertebrates.</p

    Phylogeography of Aegean green toads (Bufo viridis subgroup): continental hybrid swarm vs. insular diversification with discovery of a new island endemic

    Get PDF
    BACKGROUND: Debated aspects in speciation research concern the amount of gene flow between incipient species under secondary contact and the modes by which post-zygotic isolation accumulates. Secondary contact zones of allopatric lineages, involving varying levels of divergence, provide natural settings for comparative studies, for which the Aegean (Eastern Mediterranean) geography offers unique scenarios. In Palearctic green toads (Bufo viridis subgroup or Bufotes), Plio-Pleistocene (~ 2.6 Mya) diverged species show a sharp transition without contemporary gene flow, while younger lineages, diverged in the Lower-Pleistocene (~ 1.9 Mya), admix over tens of kilometers. Here, we conducted a fine-scale multilocus phylogeographic analysis of continental and insular green toads from the Aegean, where a third pair of taxa, involving Mid-Pleistocene diverged (~ 1.5 Mya) mitochondrial lineages, earlier tentatively named viridis and variabilis, (co-)occurs. RESULTS: We discovered a new lineage, endemic to Naxos (Central Cyclades), while coastal islands and Crete feature weak genetic differentiation from the continent. In continental Greece, both lineages, viridis and variabilis, form a hybrid swarm, involving massive mitochondrial and nuclear admixture over hundreds of kilometers, without obvious selection against hybrids. CONCLUSIONS: The genetic signatures of insular Aegean toads appear governed by bathymetry and Quaternary sea level changes, resulting in long-term isolation (Central Cyclades: Naxos) and recent land-bridges (coastal islands). Conversely, Crete has been isolated since the end of the Messinian salinity crisis (5.3 My) and Cretan populations thus likely result from human-mediated colonization, at least since Antiquity, from Peloponnese and Anatolia. Comparisons of green toad hybrid zones support the idea that post-zygotic hybrid incompatibilities accumulate gradually over the genome. In this radiation, only one million years of divergence separate a scenario of complete reproductive isolation, from a secondary contact resulting in near panmixia

    Leptonic widths of high excitations in heavy quarkonia

    Full text link
    Agreement with the measured electronic widths of the ψ(4040)\psi(4040), ψ(4415)\psi(4415), and Υ(11019)\Upsilon (11019) resonances is shown to be reached if two effects are taken into account: a flattening of the confining potential at large distances and a total screening of the gluon-exchange interaction at r\ga 1.2 fm. The leptonic widths of the unobserved Υ(7S)\Upsilon(7S) and ψ(5S)\psi(5S) resonances: Γe+e(Υ(7S))=0.11\Gamma_{e^+e^-}(\Upsilon (7S))=0.11 keV and Γ(ψ(5S))0.54\Gamma(\psi(5S))\approx 0.54 keV are predicted.Comment: 11 pages revtex
    corecore