64 research outputs found

    Mechanism of MicroRNA-Target Interaction: Molecular Dynamics Simulations and Thermodynamics Analysis

    Get PDF
    MicroRNAs (miRNAs) are endogenously produced ∼21-nt riboregulators that associate with Argonaute (Ago) proteins to direct mRNA cleavage or repress the translation of complementary RNAs. Capturing the molecular mechanisms of miRNA interacting with its target will not only reinforce the understanding of underlying RNA interference but also fuel the design of more effective small-interfering RNA strands. To address this, in the present work the RNA-bound (Ago-miRNA, Ago-miRNA-target) and RNA-free Ago forms were analyzed by performing both molecular dynamics simulations and thermodynamic analysis. Based on the principal component analysis results of the simulation trajectories as well as the correlation analysis in fluctuations of residues, we discover that: 1) three important (PAZ, Mid and PIWI) domains exist in Argonaute which define the global dynamics of the protein; 2) the interdomain correlated movements are so crucial for the interaction of Ago-RNAs that they not only facilitate the relaxation of the interactions between residues surrounding the RNA binding channel but also induce certain conformational changes; and 3) it is just these conformational changes that expand the cavity of the active site and open putative pathways for both the substrate uptake and product release. In addition, by thermodynamic analysis we also discover that for both the guide RNA 5′-end recognition and the facilitated site-specific cleavage of the target, the presence of two metal ions (of Mg2+) plays a predominant role, and this conclusion is consistent with the observed enzyme catalytic cleavage activity in the ternary complex (Ago-miRNA-mRNA). Our results find that it is the set of arginine amino acids concentrated in the nucleotide-binding channel in Ago, instead of the conventionally-deemed seed base-paring, that makes greater contributions in stabilizing the binding of the nucleic acids to Ago

    Determination of Alkali and Halide Monovalent Ion Parameters for Use in Explicitly Solvated Biomolecular Simulations

    Get PDF
    Alkali (Li+, Na+, K+, Rb+, and Cs+) and halide (F−, Cl−, Br−, and I−) ions play an important role in many biological phenomena, roles that range from stabilization of biomolecular structure, to influence on biomolecular dynamics, to key physiological influence on homeostasis and signaling. To properly model ionic interaction and stability in atomistic simulations of biomolecular structure, dynamics, folding, catalysis, and function, an accurate model or representation of the monovalent ions is critically necessary. A good model needs to simultaneously reproduce many properties of ions, including their structure, dynamics, solvation, and moreover both the interactions of these ions with each other in the crystal and in solution and the interactions of ions with other molecules. At present, the best force fields for biomolecules employ a simple additive, nonpolarizable, and pairwise potential for atomic interaction. In this work, we describe our efforts to build better models of the monovalent ions within the pairwise Coulombic and 6-12 Lennard-Jones framework, where the models are tuned to balance crystal and solution properties in Ewald simulations with specific choices of well-known water models. Although it has been clearly demonstrated that truly accurate treatments of ions will require inclusion of nonadditivity and polarizability (particularly with the anions) and ultimately even a quantum mechanical treatment, our goal was to simply push the limits of the additive treatments to see if a balanced model could be created. The applied methodology is general and can be extended to other ions and to polarizable force-field models. Our starting point centered on observations from long simulations of biomolecules in salt solution with the AMBER force fields where salt crystals formed well below their solubility limit. The likely cause of the artifact in the AMBER parameters relates to the naive mixing of the Smith and Dang chloride parameters with AMBER-adapted Åqvist cation parameters. To provide a more appropriate balance, we reoptimized the parameters of the Lennard-Jones potential for the ions and specific choices of water models. To validate and optimize the parameters, we calculated hydration free energies of the solvated ions and also lattice energies (LE) and lattice constants (LC) of alkali halide salt crystals. This is the first effort that systematically scans across the Lennard-Jones space (well depth and radius) while balancing ion properties like LE and LC across all pair combinations of the alkali ions and halide ions. The optimization across the entire monovalent series avoids systematic deviations. The ion parameters developed, optimized, and characterized were targeted for use with some of the most commonly used rigid and nonpolarizable water models, specifically TIP3P, TIP4PEW, and SPC/E. In addition to well reproducing the solution and crystal properties, the new ion parameters well reproduce binding energies of the ions to water and the radii of the first hydration shells

    Varicella-zoster virus seroprevalence in children and adolescents in the pre-varicella vaccine era, Germany

    Get PDF
    Background: In 2004, universal childhood varicella vaccination was introduced in Germany. We aimed to determine the age-specific prevalence of anti-varicella zoster virus (VZV) IgG-antibodies among children in the pre-varicella vaccine era in Germany, to identify factors associated with VZV seropositivity, and to assess the suitability of a commercially available ELISA for VZV seroepidemiological studies by comparing it with an in-house fluorescent antibody to membrane antigen test (FAMA) as the gold standard. Methods: Serum samples of 13,433 children and adolescents aged 1–17 years included in the population-based German Health Interview and Examination Survey for Children and Adolescents (KiGGS; conducted 2003–2006) were tested for anti-VZV IgG by ELISA. All samples with equivocal ELISA results and a random selection of ELISA-negative and -positive samples were tested by FAMA. Statistical analyses were conducted using a weighting factor adjusting the study population to the total population in Germany. Seroprevalences were calculated as percentages (%) with a 95% confidence interval (CI). Odds ratios (OR) were computed by multivariate logistic regression to determine the association between socio-demographic factors and VZV seropositivity. Results: The VZV seropositivity rate was 80.3% (95% CI: 79.3–81.3) in varicella-unvaccinated children and adolescents. VZV seropositivity rates differed significantly between age groups up to age 6 years, but not by gender. Of 118 retested serum samples with an equivocal ELISA result, 45.8% were FAMA-positive. The proportion of samples tested as false-negative in by ELISA varied by age group: 2.6% in children aged 1–6 and 9% in children aged 7–17 years. Multivariate analyses showed that age, having older siblings, and early daycare start were associated with seropositivity in preschoolers; migration background reduced the chance of VZV seropositivity in schoolchildren (OR: 0.65; 0.43–0.99) and adolescents (OR: 0.62; 0.4–0.97). Conclusion: In the pre-varicella vaccine era, most children in Germany contracted varicella by age six. Schoolchildren with a migration background and children without siblings have an increased risk of being VZV seronegative and should be targeted for catch-up vaccination, if they have no history of chickenpox. ELISAs are suitable for use in population-level serosurveys on VZV, but samples with equivocal ELISA results should be retested by FAMA

    Comparative varicella vaccine effectiveness during outbreaks in day-care centres

    No full text
    BACKGROUND: Routine varicella vaccination for children 11 months, vaccinated at age>11 months or >42 days before disease onset or during the outbreak were excluded from VE and BV risk factors analyses (adjusted for gender, age and DCC). FINDINGS: Of 631 children with available vaccination information, 392 (62%) were vaccinated at least once. Overall VE among 352 children eligible was 71% (95% confidence interval (CI) 57-81, p>0.001) and differed significantly by disease severity and number of doses administered. Risk for BV was higher for 1 dose of Varilrix (RR=2.8, 95%CI 1.0-7.8, p=0.05) or Priorix-Tetra (RR=2.4, 95%CI 0.7-8.3, p=0.18) but lower for 2 doses of Priorix-Tetra (RR=0.5, 95%CI 0.1-2.7, p=0.41) than for 1 dose of Varivax. INTERPRETATION: Enhanced efforts to increase VC in Germany and 2 doses varicella vaccine might be successful to reduce the risk for BV. The evidence that VE and risk of BV are associated with vaccine brand needs further investigation
    corecore