132 research outputs found

    Status and overview of development of the Silicon Pixel Detector for the PHENIX experiment at the BNL RHIC

    Get PDF
    We have developed a silicon pixel detector to enhance the physics capabilities of the PHENIX experiment. This detector, consisting of two layers of sensors, will be installed around the beam pipe at the collision point and covers a pseudo-rapidity of | \eta | < 1.2 and an azimuth angle of | \phi | ~ 2{\pi}. The detector uses 200 um thick silicon sensors and readout chips developed for the ALICE experiment. In order to meet the PHENIX DAQ readout requirements, it is necessary to read out 4 readout chips in parallel. The physics goals of PHENIX require that radiation thickness of the detector be minimized. To meet these criteria, the detector has been designed and developed. In this paper, we report the current status of the development, especially the development of the low-mass readout bus and the front-end readout electronics.Comment: 9 pages, 8 figures and 1 table in DOCX (Word 2007); PIXEL 2008 workshop proceedings, will be published in the Proceedings Section of JINST(Journal of Instrumentation

    Image-level harmonization of multi-site data using image-and-spatial transformer networks

    Get PDF
    We investigate the use of image-and-spatial transformer networks (ISTNs) to tackle domain shift in multi-site medical imaging data. Commonly, domain adaptation (DA) is performed with little regard for explainability of the inter-domain transformation and is often conducted at the feature-level in the latent space. We employ ISTNs for DA at the image-level which constrains transformations to explainable appearance and shape changes. As proof-of-concept we demonstrate that ISTNs can be trained adversarially on a classification problem with simulated 2D data. For real-data validation, we construct two 3D brain MRI datasets from the Cam-CAN and UK Biobank studies to investigate domain shift due to acquisition and population differences. We show that age regression and sex classification models trained on ISTN output improve generalization when training on data from one and testing on the other site

    The Theoretical and Methodological Opportunities Afforded by Guided Play With Young Children

    Get PDF
    For infants and young children, learning takes place all the time and everywhere. How children learn best both in and out of school has been a long-standing topic of debate in education, cognitive development, and cognitive science. Recently, guided play has been proposed as an integrative approach for thinking about learning as a child-led, adult-assisted playful activity. The interactive and dynamic nature of guided play presents theoretical and methodological challenges and opportunities. Drawing upon research from multiple disciplines, we discuss the integration of cutting-edge computational modeling and data science tools to address some of these challenges, and highlight avenues toward an empirically grounded, computationally precise and ecologically valid framework of guided play in early education

    Tabular: A Schema-driven Probabilistic Programming Language

    Get PDF
    We propose a new kind of probabilistic programming language for machine learning. We write programs simply by annotating existing relational schemas with probabilistic model expressions. We describe a detailed design of our language, Tabular, complete with formal semantics and type system. A rich series of examples illustrates the expressiveness of Tabular. We report an implementation, and show evidence of the succinctness of our notation relative to current best practice. Finally, we describe and verify a transformation of Tabular schemas so as to predict missing values in a concrete database. The ability to query for missing values provides a uniform interface to a wide variety of tasks, including classification, clustering, recommendation, and ranking

    A Diverse and Flexible Teaching Toolkit Facilitates the Human Capacity for Cumulative Culture

    Get PDF
    © 2017, The Author(s). Human culture is uniquely complex compared to other species. This complexity stems from the accumulation of culture over time through high- and low-fidelity transmission and innovation. One possible reason for why humans retain and create culture, is our ability to modulate teaching strategies in order to foster learning and innovation. We argue that teaching is more diverse, flexible, and complex in humans than in other species. This particular characteristic of human teaching rather than teaching itself is one of the reasons for human’s incredible capacity for cumulative culture. That is, humans unlike other species can signal to learners whether the information they are teaching can or cannot be modified. As a result teaching in humans can be used to support high or low fidelity transmission, innovation, and ultimately, cumulative culture

    Preserved cognitive functions with age are determined by domain-dependent shifts in network responsivity

    Get PDF
    Healthy ageing has disparate effects on different cognitive domains. The neural basis of these differences, however, is largely unknown. We investigated this question by using Independent Components Analysis to obtain functional brain components from 98 healthy participants aged 23-87 years from the population-based Cam-CAN cohort. Participants performed two cognitive tasks that show age-related decrease (fluid intelligence and object naming) and a syntactic comprehension task that shows age-related preservation. We report that activation of task-positive neural components predicts inter-individual differences in performance in each task across the adult lifespan. Furthermore, only the two tasks that show performance declines with age show age-related decreases in task-positive activation of neural components and decreasing default mode (DM) suppression. Our results suggest that distributed, multi-component brain responsivity supports cognition across the adult lifespan, and the maintenance of this, along with maintained DM deactivation, characterizes successful ageing and may explain differential ageing trajectories across cognitive domains

    Multiple determinants of lifespan memory differences

    Get PDF
    Memory problems are among the most common complaints as people grow older. Using structural equation modeling of commensurate scores of anterograde memory from a large (N = 315), population-derived sample (www.cam-can.org), we provide evidence for three memory factors that are supported by distinct brain regions and show differential sensitivity to age. Associative memory and item memory are dramatically affected by age, even after adjusting for education level and fluid intelligence, whereas visual priming is not. Associative memory and item memory are differentially affected by emotional valence, and the age-related decline in associative memory is faster for negative than for positive or neutral stimuli. Gray-matter volume in the hippocampus, parahippocampus and fusiform cortex, and a white-matter index for the fornix, uncinate fasciculus and inferior longitudinal fasciculus, show differential contributions to the three memory factors. Together, these data demonstrate the extent to which differential ageing of the brain leads to differential patterns of memory loss

    Functional MRI evidence for the decline of word retrieval and generation during normal aging

    Get PDF
    International audienceThis fMRI study aimed to explore the effect of normal aging on word retrieval and generation. The question addressed is whether lexical production decline is determined by a direct mechanism, which concerns the language operations or is rather indirectly induced by a decline of executive functions. Indeed, the main hypothesis was that normal aging does not induce loss of lexical knowledge, but there is only a general slowdown in retrieval mechanisms involved in lexical processing , due to possible decline of the executive functions. We used three tasks (verbal fluency, object naming , and semantic categorization). Two groups of participants were tested (Young, Y and Aged, A), without cognitive and psychiatric impairment and showing similar levels of vocabulary. Neuropsychological testing revealed that older participants had lower executive function scores, longer processing speeds, and tended to have lower verbal fluency scores. Additionally, older participants showed higher scores for verbal automa-tisms and overlearned information. In terms of behav-ioral data, older participants performed as accurate as younger adults, but they were significantly slower for the semantic categorization and were less fluent for verbal fluency task. Functional MRI analyses suggested that older adults did not simply activate fewer brain regions involved in word production, but they actually showed an atypical pattern of activation. Significant correlations between the BOLD (Blood Oxygen Level Dependent) signal of aging-related (A > Y) regions and cognitive scores suggested that this atypical pattern of the activation may reveal several compensatory mechanisms (a) to overcome the slowdown in retrieval, due to the decline of executive functions and processing speed and (b) to inhibit verbal automatic processes. The BOLD signal measured in some other aging-dependent regions did not correlate with the behavioral and neuro-psychological scores, and the overactivation of these uncorrelated regions would simply reveal dedifferentia-tion that occurs with aging. Altogether, our results suggest that normal aging is associated with a more difficult access to lexico-semantic operations and representations by a slowdown in executive functions, without any conceptual loss
    • 

    corecore