28 research outputs found

    Short-term plasticity of neuro-auditory processing induced by musical active listening training

    Get PDF
    Although there is strong evidence for the positive effects of musical training on auditory perception, processing, and training-induced neuroplasticity, there is still little knowledge on the auditory and neurophysiological short-term plasticity through listening training. In a sample of 37 adolescents (20 musicians and 17 nonmusicians) that was compared to a control group matched for age, gender, and musical experience, we conducted a 2-week active listening training (AULOS: Active IndividUalized Listening OptimizationS). Using magnetoencephalography and psychoacoustic tests, the short-term plasticity of auditory evoked fields and auditory skills were examined in a pre-post design, adapted to the individual neuro-auditory profiles. We found bilateral, but more pronounced plastic changes in the right auditory cortex. Moreover, we observed synchronization of the auditory evoked P1, N1, and P2 responses and threefold larger amplitudes of the late P2 response, similar to the reported effects of musical long-term training. Auditory skills and thresholds benefited largely from the AULOS training. Remarkably, after training, the mean thresholds improved by 12 dB for bone conduction and by 3–4 dB for air conduction. Thus, our findings indicate a strong positive influence of active listening training on neural auditory processing and perception in adolescence, when the auditory system is still developing

    Pitch Enumeration: Failure to Subitize in Audition

    Get PDF
    Background: Subitizing involves recognition mechanisms that allow effortless enumeration of up to four visual objects, however despite ample resolution experimental data suggest that only one pitch can be reliably enumerated. This may be due to the grouping of tones according to harmonic relationships by recognition mechanisms prior to fine pitch processing. Poorer frequency resolution of auditory information available to recognition mechanisms may lead to unrelated tones being grouped, resulting in underestimation of pitch number. Methods, Results and Conclusion: We tested whether pitch enumeration is better for chords of full harmonic complex tones, where grouping errors are less likely, than for complexes with fewer and less accurately tuned harmonics. Chords of low familiarity were used to mitigate the possibility that participants would recognize the chord itself and simply recall the number of pitches. We found that accuracy of pitch enumeration was less than the visual system overall, and underestimation of pitch number increased for stimuli containing fewer harmonics. We conclude that harmonically related tones are first grouped at the poorer frequency resolution of the auditory nerve, leading to poor enumeration of more than one pitch

    Sensitivity of the human auditory cortex to acoustic degradation of speech and non-speech sounds

    Get PDF
    The perception of speech is usually an effortless and reliable process even in highly adverse listening conditions. In addition to external sound sources, the intelligibility of speech can be reduced by degradation of the structure of speech signal itself, for example by digital compression of sound. This kind of distortion may be even more detrimental to speech intelligibility than external distortion, given that the auditory system will not be able to utilize sound source-specific acoustic features, such as spatial location, to separate the distortion from the speech signal. The perceptual consequences of acoustic distortions on speech intelligibility have been extensively studied. However, the cortical mechanisms of speech perception in adverse listening conditions are not well known at present, particularly in situations where the speech signal itself is distorted. The aim of this thesis was to investigate the cortical mechanisms underlying speech perception in conditions where speech is less intelligible due to external distortion or as a result of digital compression. In the studies of this thesis, the intelligibility of speech was varied either by digital compression or addition of stochastic noise. Cortical activity related to the speech stimuli was measured using magnetoencephalography (MEG). The results indicated that degradation of speech sounds by digital compression enhanced the evoked responses originating from the auditory cortex, whereas addition of stochastic noise did not modulate the cortical responses. Furthermore, it was shown that if the distortion was presented continuously in the background, the transient activity of auditory cortex was delayed. On the perceptual level, digital compression reduced the comprehensibility of speech more than additive stochastic noise. In addition, it was also demonstrated that prior knowledge of speech content enhanced the intelligibility of distorted speech substantially, and this perceptual change was associated with an increase in cortical activity within several regions adjacent to auditory cortex. In conclusion, the results of this thesis show that the auditory cortex is very sensitive to the acoustic features of the distortion, while at later processing stages, several cortical areas reflect the intelligibility of speech. These findings suggest that the auditory system rapidly adapts to the variability of the auditory environment, and can efficiently utilize previous knowledge of speech content in deciphering acoustically degraded speech signals.Puheen havaitseminen on useimmiten vaivatonta ja luotettavaa myös erittäin huonoissa kuunteluolosuhteissa. Puheen ymmärrettävyys voi kuitenkin heikentyä ympäristön häiriölähteiden lisäksi myös silloin, kun puhesignaalin rakennetta muutetaan esimerkiksi pakkaamalla digitaalista ääntä. Tällainen häiriö voi heikentää ymmärrettävyyttä jopa ulkoisia häiriöitä voimakkaammin, koska kuulojärjestelmä ei pysty hyödyntämään äänilähteen ominaisuuksia, kuten äänen tulosuuntaa, häiriön erottelemisessa puheesta. Akustisten häiriöiden vaikutuksia puheen havaitsemiseen on tutkttu laajalti, mutta havaitsemiseen liittyvät aivomekanismit tunnetaan edelleen melko puutteelisesti etenkin tilanteissa, joissa itse puhesignaali on laadultaan heikentynyt. Tämän väitöskirjan tavoitteena oli tutkia puheen havaitsemisen aivomekanismeja tilanteissa, joissa puhesignaali on vaikeammin ymmärrettävissä joko ulkoisen äänilähteen tai digitaalisen pakkauksen vuoksi. Väitöskirjan neljässä osatutkimuksessa lyhyiden puheäänien ja jatkuvan puheen ymmärrettävyyttä muokattiin joko digitaalisen pakkauksen kautta tai lisäämällä puhesignaaliin satunnaiskohinaa. Puheärsykkeisiin liittyvää aivotoimintaa tutkittiin magnetoenkefalografia-mittauksilla. Tutkimuksissa havaittiin, että kuuloaivokuorella syntyneet herätevasteet voimistuivat, kun puheääntä pakattiin digitaalisesti. Sen sijaan puheääniin lisätty satunnaiskohina ei vaikuttanut herätevasteisiin. Edelleen, mikäli puheäänien taustalla esitettiin jatkuvaa häiriötä, kuuloaivokuoren aktivoituminen viivästyi häiriön intensiteetin kasvaessa. Kuuntelukokeissa havaittiin, että digitaalinen pakkaus heikentää puheäänien ymmärrettävyyttä voimakkaammin kuin satunnaiskohina. Lisäksi osoitettiin, että aiempi tieto puheen sisällöstä paransi merkittävästi häiriöisen puheen ymmärrettävyyttä, mikä heijastui aivotoimintaan kuuloaivokuoren viereisillä aivoalueilla siten, että ymmärrettävä puhe aiheutti suuremman aktivaation kuin heikosti ymmärrettävä puhe. Väitöskirjan tulokset osoittavat, että kuuloaivokuori on erittäin herkkä puheäänien akustisille häiriöille, ja myöhemmissä prosessoinnin vaiheissa useat kuuloaivokuoren viereiset aivoalueet heijastavat puheen ymmärrettävyyttä. Tulosten mukaan voi olettaa, että kuulojärjestelmä mukautuu nopeasti ääniympäristön vaihteluihin muun muassa hyödyntämällä aiempaa tietoa puheen sisällöstä tulkitessaan häiriöistä puhesignaalia

    Insights on the Neuromagnetic Representation of Temporal Asymmetry in Human Auditory Cortex.

    Get PDF
    Communication sounds are typically asymmetric in time and human listeners are highly sensitive to this short-term temporal asymmetry. Nevertheless, causal neurophysiological correlates of auditory perceptual asymmetry remain largely elusive to our current analyses and models. Auditory modelling and animal electrophysiological recordings suggest that perceptual asymmetry results from the presence of multiple time scales of temporal integration, central to the auditory periphery. To test this hypothesis we recorded auditory evoked fields (AEF) elicited by asymmetric sounds in humans. We found a strong correlation between perceived tonal salience of ramped and damped sinusoids and the AEFs, as quantified by the amplitude of the N100m dynamics. The N100m amplitude increased with stimulus half-life time, showing a maximum difference between the ramped and damped stimulus for a modulation half-life time of 4 ms which is greatly reduced at 0.5 ms and 32 ms. This behaviour of the N100m closely parallels psychophysical data in a manner that: i) longer half-life times are associated with a stronger tonal percept, and ii) perceptual differences between damped and ramped are maximal at 4 ms half-life time. Interestingly, differences in evoked fields were significantly stronger in the right hemisphere, indicating some degree of hemispheric specialisation. Furthermore, the N100m magnitude was successfully explained by a pitch perception model using multiple scales of temporal integration of auditory nerve activity patterns. This striking correlation between AEFs, perception, and model predictions suggests that the physiological mechanisms involved in the processing of pitch evoked by temporal asymmetric sounds are reflected in the N100m

    Auditory temporal processing in healthy aging: a magnetoencephalographic study

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Impaired speech perception is one of the major sequelae of aging. In addition to peripheral hearing loss, central deficits of auditory processing are supposed to contribute to the deterioration of speech perception in older individuals. To test the hypothesis that auditory temporal processing is compromised in aging, auditory evoked magnetic fields were recorded during stimulation with sequences of 4 rapidly recurring speech sounds in 28 healthy individuals aged 20 – 78 years.</p> <p>Results</p> <p>The decrement of the N1m amplitude during rapid auditory stimulation was not significantly different between older and younger adults. The amplitudes of the middle-latency P1m wave and of the long-latency N1m, however, were significantly larger in older than in younger participants.</p> <p>Conclusion</p> <p>The results of the present study do not provide evidence for the hypothesis that auditory temporal processing, as measured by the decrement (short-term habituation) of the major auditory evoked component, the N1m wave, is impaired in aging. The differences between these magnetoencephalographic findings and previously published behavioral data might be explained by differences in the experimental setting between the present study and previous behavioral studies, in terms of speech rate, attention, and masking noise. Significantly larger amplitudes of the P1m and N1m waves suggest that the cortical processing of individual sounds differs between younger and older individuals. This result adds to the growing evidence that brain functions, such as sensory processing, motor control and cognitive processing, can change during healthy aging, presumably due to experience-dependent neuroplastic mechanisms.</p

    “When Music Speaks”: Auditory Cortex Morphology as a Neuroanatomical Marker of Language Aptitude and Musicality

    No full text
    Recent research has shown that the morphology of certain brain regions may indeed correlate with a number of cognitive skills such as musicality or language ability. The main aim of the present study was to explore the extent to which foreign language aptitude, in particular phonetic coding ability, is influenced by the morphology of Heschl’s gyrus (HG; auditory cortex), working memory capacity, and musical ability. In this study, the auditory cortices of German-speaking individuals (N = 30; 13 males/17 females; aged 20–40 years) with high and low scores in a number of language aptitude tests were compared. The subjects’ language aptitude was measured by three different tests, namely a Hindi speech imitation task (phonetic coding ability), an English pronunciation assessment, and the Modern Language Aptitude Test (MLAT). Furthermore, working memory capacity and musical ability were assessed to reveal their relationship with foreign language aptitude. On the behavioral level, significant correlations were found between phonetic coding ability, English pronunciation skills, musical experience, and language aptitude as measured by the MLAT. Parts of all three tests measuring language aptitude correlated positively and significantly with each other, supporting their validity for measuring components of language aptitude. Remarkably, the number of instruments played by subjects showed significant correlations with all language aptitude measures and musicality, whereas, the number of foreign languages did not show any correlations. With regard to the neuroanatomy of auditory cortex, adults with very high scores in the Hindi testing and the musicality test (AMMA) demonstrated a clear predominance of complete posterior HG duplications in the right hemisphere. This may reignite the discussion of the importance of the right hemisphere for language processing, especially when linked or common resources are involved, such as the inter-dependency between phonetic and musical aptitude

    Gestalt Recognition in a Virtual Melody Experiment

    No full text
    Introduction The pitch of a harmonic complex tone corresponds to its fundamental frequency (f 0 ). Interestingly, this sensation does not depend on the physical presence of f 0 . The phenomenon, commonly referred to as virtual pitch [1], has often been compared to the perception of visual illusory contours. It is contrasted by the perception of spectral pitches, elicited by a tone&apos;s physically present harmonics. While, in principle, each human subject and even higher vertebrates [2,3,4] are able to perceive missing fundamentals, the predominance of one type of pitch perception over the other (spectral vs. virtual) has been shown to depend on the spectral content of the stimulus as well as on the subject&apos;s musical experience [5]. Experiments using ambiguous two-tone sequences revealed that &quot;spectral listeners&quot; can be trained to switch to the virtual mode of pitch perception. In contrast, for &quot;virtual listeners&quot;, a reversed training was without success [6]. This finding indicates a hie

    “When Music Speaks”: Auditory Cortex Morphology as a Neuroanatomical Marker of Language Aptitude and Musicality

    No full text
    Recent research has shown that the morphology of certain brain regions may indeed correlate with a number of cognitive skills such as musicality or language ability. The main aim of the present study was to explore the extent to which foreign language aptitude, in particular phonetic coding ability, is influenced by the morphology of Heschl’s gyrus (HG; auditory cortex), working memory capacity, and musical ability. In this study, the auditory cortices of German-speaking individuals (N = 30; 13 males/17 females; aged 20–40 years) with high and low scores in a number of language aptitude tests were compared. The subjects’ language aptitude was measured by three different tests, namely a Hindi speech imitation task (phonetic coding ability), an English pronunciation assessment, and the Modern Language Aptitude Test (MLAT). Furthermore, working memory capacity and musical ability were assessed to reveal their relationship with foreign language aptitude. On the behavioral level, significant correlations were found between phonetic coding ability, English pronunciation skills, musical experience, and language aptitude as measured by the MLAT. Parts of all three tests measuring language aptitude correlated positively and significantly with each other, supporting their validity for measuring components of language aptitude. Remarkably, the number of instruments played by subjects showed significant correlations with all language aptitude measures and musicality, whereas, the number of foreign languages did not show any correlations. With regard to the neuroanatomy of auditory cortex, adults with very high scores in the Hindi testing and the musicality test (AMMA) demonstrated a clear predominance of complete posterior HG duplications in the right hemisphere. This may reignite the discussion of the importance of the right hemisphere for language processing, especially when linked or common resources are involved, such as the inter-dependency between phonetic and musical aptitude.© 2017 Turker, Reiterer, Seither-Preisler and Schneide
    corecore