92 research outputs found
Three-dimensional laser micro- and nano-structuring of acrylated poly(ethylene glycol) materials and evaluation of their cytoxicity for tissue engineering applications
The natural cell environment is characterised by complex three-dimensional structures, which contain features at multiple length scales. Many in vitro studies of cell behaviour in three dimensions rely on the availability of artificial scaffolds with controlled three-dimensional topologies. In this paper, we demonstrate fabrication of three-dimensional scaffolds for tissue engineering out of poly(ethylene glycol) diacrylate (PEGda) materials by means of two-photon polymerization (2PP). This laser nanostructuring approach offers unique possibilities for rapid manufacturing of three-dimensional structures with arbitrary geometries. The spatial resolution dependence on the applied irradiation parameters is investigated for two PEGda formulations, which are characterized by molecular weights of 302 and 742. We demonstrate that minimum feature sizes of 200 nm are obtained in both materials. In addition, an extensive study of the cytotoxicity of the material formulations with respect to photoinitiator type and photoinitiator concentration is undertaken. Aqueous extracts from photopolymerized PEGda samples indicate the presence of water-soluble molecules, which are toxic to fibroblasts. It is shown that sample aging in aqueous medium reduces the cytotoxicity of these extracts; this mechanism provides a route for biomedical applications of structures generated by 2PP microfabrication and photopolymerization technologies in general. Finally, a fully biocompatible combination of PEGda and a photoinitiator is identified. Fabrication of reproducible scaffold structures is very important for systematic investigation of cellular processes in three dimensions and for better understanding of in vitro tissue formation. The results of this work suggest that 2PP may be used to polymerize poly(ethylene glycol)-based materials into three-dimensional structures with well-defined geometries that mimic the physical and biological properties of native cell environments
Tamiflu-Resistant but HA-Mediated Cell-to-Cell Transmission through Apical Membranes of Cell-Associated Influenza Viruses
The infection of viruses to a neighboring cell is considered to be beneficial in terms of evasion from host anti-virus defense systems. There are two pathways for viral infection to âright next doorâ: one is the virus transmission through cell-cell fusion by forming syncytium without production of progeny virions, and the other is mediated by virions without virus diffusion, generally designated cell-to-cell transmission. Influenza viruses are believed to be transmitted as cell-free virus from infected cells to uninfected cells. Here, we demonstrated that influenza virus can utilize cell-to-cell transmission pathway through apical membranes, by handover of virions on the surface of an infected cell to adjacent host cells. Live cell imaging techniques showed that a recombinant influenza virus, in which the neuraminidase gene was replaced with the green fluorescence protein gene, spreads from an infected cell to adjacent cells forming infected cell clusters. This type of virus spreading requires HA activation by protease treatment. The cell-to-cell transmission was also blocked by amantadine, which inhibits the acidification of endosomes required for uncoating of influenza virus particles in endosomes, indicating that functional hemagglutinin and endosome acidification by M2 ion channel were essential for the cell-to-cell influenza virus transmission. Furthermore, in the cell-to-cell transmission of influenza virus, progeny virions could remain associated with the surface of infected cell even after budding, for the progeny virions to be passed on to adjacent uninfected cells. The evidence that cell-to-cell transmission occurs in influenza virus lead to the caution that local infection proceeds even when treated with neuraminidase inhibitors
A response to industrial maturity and energetic issues: a possible solution based on constructal law
n/
Living on Cold Substrata: New Insights and Approaches in the Study of Microphytobenthos Ecophysiology and Ecology in Kongsfjorden
Organisms in shallow waters at high latitudes are under pressure due to climate change. These areas are typically inhabited by microphytobenthos (MPB) communities, composed mainly of diatoms. Only sparse information is available on the ecophysiology and acclimation processes within MPBs from Arctic regions. The
physico-chemical environment and the ecology and ecophysiology of benthic diatoms in Kongsfjorden (Svalbard, Norway) are addressed in this review. MPB biofilms cover extensive areas of sediment. They show high rates of primary production, stabilise sediment surfaces against erosion under hydrodynamic forces,and affect the exchange of oxygen and nutrients across the sediment-water interface. Additionally, this phototrophic community represents a key component in the functioning of the Kongsfjorden trophic web, particularly as a major food source for benthic suspension- or deposit-feeders. MPB in Kongsfjorden is confronted with pronounced seasonal variations in solar radiation, low temperatures, and hyposaline (meltwater) conditions in summer, as well as long periods of ice and snow cover in winter. From the few data available, it seems that these organisms can easily cope with these environmental extremes. The underlying physiological mechanisms that allow growth and photosynthesis to continue under widely varying abiotic parameters, along with vertical migration and heterotrophy, and biochemical features such as a pronounced fatty-acid metabolism
and silicate incorporation are discussed. Existing gaps in our knowledge of benthic diatoms in Kongsfjorden, such as the chemical ecology of biotic interactions, need to be filled. In addition, since many of the underlying molecular acclimation mechanisms are poorly understood, modern approaches based on transcriptomics,
proteomics, and/or metabolomics, in conjunction with cell biological and biochemical techniques, are urgently needed. Climate change models for the Arctic predict other multifactorial stressors, such as an increase in precipitation and permafrost thawing, with consequences for the shallow-water regions. Both precipitation and permafrost thawing are likely to increase nutrient-enriched, turbid freshwater runoff and may locally counteract the expected increase in coastal radiation availability. So far, complex interactions among factors, as well as the full genetic diversity and physiological plasticity of Arctic benthic diatoms, have only rarely been considered. The limited existing information is described and discussed in this review
Ultrafast photofragmentation dynamics of molecular iodine driven with timed XUV and near-infrared light pulses
Photofragmentation dynamics of molecular iodine was studied as a response to the joint illumination with femtosecond 800 nm near-infrared and 13 nm extreme ultraviolet (XUV) pulses delivered by the free-electron laser facility FLASH. The interaction of the molecular target with two light pulses of different wavelengths but comparable pulse energy elucidates a complex intertwined electronic and nuclear dynamics. To follow distinct pathways out of a multitude of reaction channels, the recoil of created ionic fragments is analyzed. The delayed XUV pulse provides a way of following molecular photodissociation of I(2) with a characteristic time-constant of (55 ± 10) fs after the laser-induced formation of antibonding states. A preceding XUV pulse, on the other hand, preferably creates a 4d(-1) inner-shell vacancy followed by the fast Auger cascade with a revealed characteristic time constant Ï(A2)=(23±11) fs for the second Auger decay transition. Some fraction of molecular cationic states undergoes subsequent Coulomb explosion, and the evolution of the launched molecular wave packet on the repulsive Coulomb potential was accessed by the laser-induced postionization. A further unexpected photofragmentation channel, which relies on the collective action of XUV and laser fields, is attributed to a laser-promoted charge transfer transition in the exploding molecule
Garmin Fénix 7® Underestimates Performance at the Lactate Threshold in Comparison to Standardized Blood Lactate Field Test
Marie Heiber,1,* Andrea Schittenhelm,1,* Jennifer Schlie,2,* Marcus Beckert,2 Pascal Graf,2 Annette Schmidt1â 3 1dtec.bw, NextGenerationEU Project Smart Health Lab, University of the Bundeswehr, Chair of Sport Biology Munich, Munich, Germany; 2University of the Bundeswehr, Institute of Sport Sciences, Chair of Sport Biology, Munich, Germany; 3Research Center Smart Digital Health, University of the Bundeswehr Munich, Munich, Germany*These authors contributed equally to this workCorrespondence: Annette Schmidt, Chair of Sport Biology, University of the Bundeswehr Munich, Werner-Heisenberg-Weg 39, Neubiberg, Munich, Bavaria, 85577, Germany, Tel +49 89 6004 4412, Email [email protected]: Lactate threshold (LT) is a critical performance measure traditionally obtained using costly laboratory-based tests. Wearables offer a practical and noninvasive alternative for LT assessment in recreational and professional athletes. However, the comparability of these estimates with the regular field tests requires further evaluation.Patients and Methods: In our sample of 26 participants (nf=7 and nm=19), we compared the estimated running pace and heart rate (HR) at LT with two subsequent tests. First, participants performed the Fenix 7Âź threshold running test after a calibration phase. Subsequently, they were tested in a standardized, graded blood lactate field test. Age was 25.97 (± 6.26) years, and body mass index (BMI) was 24.58 (± 2.8) kg/m2.Results: Pace at LT calculated by Fenix 7Âź (M=11.87 km/h ± 1.26 km/h) was 11.96% lower compared to the field test (M=13.28 km/h ± 1.72 km/h), which was significant (p 0.05). LT data obtained in the field test showed greater overall variance.Conclusion: Our results suggest sufficient accuracy of Fenix 7Âź LT estimates for recreational athletes. It can be assumed that for professional athletes, it would fail to provide the nuanced data needed for high-quality training management.Keywords: smartwatch, physical performance, physiology, heart rate, pac
- âŠ