178 research outputs found

    Effect of irradiation/bone marrow transplantation on alveolar epithelial type II cells is aggravated in surfactant protein D deficient mice.

    Get PDF
    Irradiation followed by bone marrow transplantation (BM-Tx) is a frequent therapeutic intervention causing pathology to the lung. Although alveolar epithelial type II (AE2) cells are essential for lung function and are damaged by irradiation, the long-term consequences of irradiation and BM-Tx are not well characterized. In addition, it is unknown whether surfactant protein D (SP-D) influences the response of AE2 cells to the injurious events. Therefore, wildtype (WT) and SP-D(-/-) mice were subjected to a myeloablative whole body irradiation dose of 8 Gy and subsequent BM-Tx and compared with age- and sex-matched untreated controls. AE2 cell changes were investigated quantitatively by design-based stereology. Compared with WT, untreated SP-D(-/-) mice showed a higher number of larger sized AE2 cells and a greater amount of surfactant-storing lamellar bodies. Irradiation and BM-Tx induced hyperplasia and hypertrophy in WT and SP-D(-/-) mice as well as the formation of giant lamellar bodies. The experimentally induced alterations were more severe in the SP-D(-/-) than in the WT mice, particularly with respect to the surfactant-storing lamellar bodies which were sometimes extremely enlarged in SP-D(-/-) mice. In conclusion, irradiation and BM-Tx have profound long-term effects on AE2 cells and their lamellar bodies. These data may explain some of the clinical pulmonary consequences of this procedure. The data should also be taken into account when BM-Tx is used as an experimental procedure to investigate the impact of bone marrow-derived cells for the phenotype of a specific genotype in the mouse

    Pursuing Experimental Reproducibility: An Efficient Protocol for the Preparation of Cerebrospinal Fluid Samples for NMR-Based Metabolomics and Analysis of Sample Degradation

    Get PDF
    NMR-based metabolomics investigations of human biofluids offer great potential to uncover new biomarkers. In contrast to protocols for sample collection and biobanking, procedures for sample preparation prior to NMR measurements are still heterogeneous, thus compromising the comparability of the resulting data. Herein, we present results of an investigation of the handling of cerebrospinal fluid (CSF) samples for NMR metabolomics research. Origins of commonly observed problems when conducting NMR experiments on this type of sample are addressed, and suitable experimental conditions in terms of sample preparation and pH control are discussed. Sample stability was assessed by monitoring the degradation of CSF samples by NMR, hereby identifying metabolite candidates, which are potentially affected by sample storage. A protocol was devised yielding consistent spectroscopic data as well as achieving overall sample stability for robust analysis. We present easy to adopt standard operating procedures with the aim to establish a shared sample handling strategy that facilitates and promotes inter-laboratory comparison, and the analysis of sample degradation provides new insights into sample stability

    Impact of Beta-Amyloid-Specific Florbetaben PET Imaging on Confidence in Early Diagnosis of Alzheimer’s Disease

    Get PDF
    BACKGROUND: Early diagnosis of Alzheimer's disease (AD) may be corroborated by imaging of beta-amyloid plaques using positron emission tomography (PET). Here, we performed an add-on questionnaire study to evaluate the relevance of florbetaben imaging (BAY 949172) in diagnosis and consecutive management of probable AD patients. METHODS: AD patients with a clinical diagnosis in accordance with the NINCDS-ADRDA criteria or controls were imaged using florbetaben. Referring physicians were asked on a voluntary basis about their confidence in initial diagnosis, significance of PET imaging results, and their anticipated consequences for future patient care. RESULTS: 121 questionnaires for probable AD patients and 80 questionnaires for controls were evaluated. In 18% of patients who had initially received the diagnosis of probable AD, PET scans were rated negative, whereas in controls 18% of scans were positive. An increase in confidence in the initial diagnosis was frequently reported (80%). Imaging results had a significant impact on the intended patient care, as judged by the referring physicians; this was most prominent in those patients with a contradicting scan and/or a low confidence in the initial diagnosis. CONCLUSION: Florbetaben amyloid imaging increases the overall confidence in diagnosis of AD and may frequently influence clinical decisions and patient management

    Amyloid β-peptide directly induces spontaneous calcium transients, delayed intercellular calcium waves and gliosis in rat cortical astrocytes

    Get PDF
    The contribution of astrocytes to the pathophysiology of AD (Alzheimer's disease) and the molecular and signalling mechanisms that potentially underlie them are still very poorly understood. However, there is mounting evidence that calcium dysregulation in astrocytes may be playing a key role. Intercellular calcium waves in astrocyte networks in vitro can be mechanically induced after Aβ (amyloid β-peptide) treatment, and spontaneously forming intercellular calcium waves have recently been shown in vivo in an APP (amyloid precursor protein)/PS1 (presenilin 1) Alzheimer's transgenic mouse model. However, spontaneous intercellular calcium transients and waves have not been observed in vitro in isolated astrocyte cultures in response to direct Aβ stimulation in the absence of potentially confounding signalling from other cell types. Here, we show that Aβ alone at relatively low concentrations is directly able to induce intracellular calcium transients and spontaneous intercellular calcium waves in isolated astrocytes in purified cultures, raising the possibility of a potential direct effect of Aβ exposure on astrocytes in vivo in the Alzheimer's brain. Waves did not occur immediately after Aβ treatment, but were delayed by many minutes before spontaneously forming, suggesting that intracellular signalling mechanisms required sufficient time to activate before intercellular effects at the network level become evident. Furthermore, the dynamics of intercellular calcium waves were heterogeneous, with distinct radial or longitudinal propagation orientations. Lastly, we also show that changes in the expression levels of the intermediate filament proteins GFAP (glial fibrillary acidic protein) and S100B are affected by Aβ-induced calcium changes differently, with GFAP being more dependent on calcium levels than S100B

    Value of neuropsychological tests to identify patients with depressive symptoms on the Alzheimer's disease continuum

    Get PDF
    BACKGROUND: Depressive symptoms often co-occur with Alzheimer's disease (AD) and can impact neuropsychological test results. In early stages of AD, disentangling cognitive impairments due to depression from those due to neurodegeneration often poses a challenge. OBJECTIVE: We aimed to identify neuropsychological tests able to detect AD-typical pathology while taking into account varying degrees of depressive symptoms. METHODS: A battery of neuropsychological tests (CERAD-NP) and the Geriatric Depression Scale (GDS) were assessed, and cerebrospinal fluid (CSF) biomarkers were obtained. After stratifying patients into CSF positive or negative and into low, moderate, or high GDS score groups, sensitivity and specificity and area under the curve (AUC) were calculated for each subtest. RESULTS: 497 participants were included in the analyses. In patients with low GDS scores (≤10), the highest AUC (0.72) was achieved by Mini-Mental State Examination, followed by Constructional Praxis Recall and Wordlist Total Recall (AUC = 0.714, both). In patients with moderate (11-20) and high (≥21) GDS scores, Trail Making Test-B (TMT-B) revealed the highest AUCs with 0.77 and 0.82, respectively. CONCLUSION: Neuropsychological tests showing AD-typical pathology in participants with low GDS scores are in-line with previous results. In patients with higher GDS scores, TMT-B showed the best discrimination. This indicates the need to focus on executive function rather than on memory task results in depressed patients to explore a risk for AD

    Apolipoprotein E4 disrupts the neuroprotective action of sortilin in neuronal lipid metabolism and endocannabinoid signaling

    Get PDF
    INTRODUCTION: Apolipoprotein E (apoE) is a carrier for brain lipids and the most important genetic risk factor for Alzheimer's disease (AD). ApoE binds the receptor sortilin, which mediates uptake of apoE‐bound cargo into neurons. The significance of this uptake route for brain lipid homeostasis and AD risk seen with apoE4, but not apoE3, remains unresolved. METHODS: Combining neurolipidomics in patient specimens with functional studies in mouse models, we interrogated apoE isoform–specific functions for sortilin in brain lipid metabolism and AD. RESULTS: Sortilin directs the uptake and conversion of polyunsaturated fatty acids into endocannabinoids, lipid‐based neurotransmitters that act through nuclear receptors to sustain neuroprotective gene expression in the brain. This sortilin function requires apoE3, but is disrupted by binding of apoE4, compromising neuronal endocannabinoid metabolism and action. DISCUSSION: We uncovered the significance of neuronal apoE receptor sortilin in facilitating neuroprotective actions of brain lipids, and its relevance for AD risk seen with apoE4

    Proteome profiling in cerebrospinal fluid reveals novel biomarkers of Alzheimer's disease

    Get PDF
    Neurodegenerative diseases are a growing burden, and there is an urgent need for better biomarkers for diagnosis, prognosis, and treatment efficacy. Structural and functional brain alterations are reflected in the protein composition of cerebrospinal fluid (CSF). Alzheimer's disease (AD) patients have higher CSF levels of tau, but we lack knowledge of systems-wide changes of CSF protein levels that accompany AD. Here, we present a highly reproducible mass spectrometry (MS)-based proteomics workflow for the in-depth analysis of CSF from minimal sample amounts. From three independent studies (197 individuals), we characterize differences in proteins by AD status (> 1,000 proteins, CV < 20%). Proteins with previous links to neurodegeneration such as tau, SOD1, and PARK7 differed most strongly by AD status, providing strong positive controls for our approach. CSF proteome changes in Alzheimer's disease prove to be widespread and often correlated with tau concentrations. Our unbiased screen also reveals a consistent glycolytic signature across our cohorts and a recent study. Machine learning suggests clinical utility of this proteomic signature

    Cortical Layer 1 and Layer 2/3 Astrocytes Exhibit Distinct Calcium Dynamics In Vivo

    Get PDF
    Cumulative evidence supports bidirectional interactions between astrocytes and neurons, suggesting glial involvement of neuronal information processing in the brain. Cytosolic calcium (Ca2+) concentration is important for astrocytes as Ca2+ surges co-occur with gliotransmission and neurotransmitter reception. Cerebral cortex is organized in layers which are characterized by distinct cytoarchitecture. We asked if astrocyte-dominant layer 1 (L1) of the somatosensory cortex was different from layer 2/3 (L2/3) in spontaneous astrocytic Ca2+ activity and if it was influenced by background neural activity. Using a two-photon laser scanning microscope, we compared spontaneous Ca2+ activity of astrocytic somata and processes in L1 and L2/3 of anesthetized mature rat somatosensory cortex. We also assessed the contribution of background neural activity to the spontaneous astrocytic Ca2+ dynamics by investigating two distinct EEG states (“synchronized” vs. “de-synchronized” states). We found that astrocytes in L1 had nearly twice higher Ca2+ activity than L2/3. Furthermore, Ca2+ fluctuations of processes within an astrocyte were independent in L1 while those in L2/3 were synchronous. Pharmacological blockades of metabotropic receptors for glutamate, ATP, and acetylcholine, as well as suppression of action potentials did not have a significant effect on the spontaneous somatic Ca2+ activity. These results suggest that spontaneous astrocytic Ca2+ surges occurred in large part intrinsically, rather than neural activity-driven. Our findings propose a new functional segregation of layer 1 and 2/3 that is defined by autonomous astrocytic activity

    Worry is associated with robust reductions in heart rate variability: a transdiagnostic study of anxiety psychopathology

    Get PDF
    Background Individuals with anxiety disorders display reduced resting-state heart rate variability (HRV), although findings have been contradictory and the role of specific symptoms has been less clear. It is possible that HRV reductions may transcend diagnostic categories, consistent with dimensional-trait models of psychopathology. Here we investigated whether anxiety disorders or symptoms of anxiety, stress, worry and depression are more strongly associated with resting-state HRV. Methods Resting-state HRV was calculated in participants with clinical anxiety (n = 25) and healthy controls (n = 58). Symptom severity measures of worry, anxiety, stress, and depression were also collected from participants, regardless of diagnosis. Results Participants who fulfilled DSM-IV criteria for an anxiety disorder displayed diminished HRV, a difference at trend level significance (p = .1, Hedges’ g = -.37, BF10 = .84). High worriers (Total n = 41; n = 22 diagnosed with an anxiety disorder and n = 19 not meeting criteria for any psychopathology) displayed a robust reduction in resting state HRV relative to low worriers (p = .001, Hedges’ g = -.75, BF10 = 28.16). Conclusions The specific symptom of worry – not the diagnosis of an anxiety disorder – was associated with the most robust reductions in HRV, indicating that HRV may provide a transdiagnostic biomarker of worry. These results enhance understanding of the relationship between the cardiac autonomic nervous system and anxiety psychopathology, providing support for dimensional-trait models consistent with the Research Domain Criteria framework
    corecore