483 research outputs found

    New specimen of Psephoderma alpinum (Sauropterygia, Placodontia) from the Late Triassic of Schesaplana Mountain, Graubünden, Switzerland

    Full text link
    Psephoderma alpinum is an armoured, durophagous placodont known from the alpine Late Triassic. Here we present a new, well-preserved isolated skull discovered in the Alplihorn Member (Late Norian–Early Rhaetian) of the Kössen Formation, Schesaplana Mountain, which straddles the Swiss/Austrian border. Micro-computed tomographic (µCT) scanning was used to create an accurate osteological reconstruction of the specimen, the first time this has been conducted for Psephoderma. We thus clarify disputed anatomical features from previous descriptions, such as a lack of a lacrimal and a pineal foramen that is enclosed by the parietal. We also present the first description based on µCT data of the lateral braincase wall, sphenoid region and some cranial nerve canals for Psephoderma, with the location of the hypophyseal seat, cerebral carotid foramina, dorsum sellae, prootic foramen, lacrimal foramen, as well as all dental foramina being described. This specimen represents the first skull of Psephoderma recovered in Switzerland, and features such as poorly-sutured braincase elements and its relatively small size compared to other known specimens may indicate that it was a sub-adult

    The late Miocene caimanine fauna (Crocodylia: Alligatoroidea) of the Urumaco Formation, Venezuela

    Get PDF
    The late Miocene Urumaco Formation at Urumaco, Falcón state, Venezuela, is remarkably rich in extinct crocodylians, presenting a diversity hotspot in the Neotropics for the group. Herein, we revise the Caimaninae fauna by including novel fossil material as well as the previously described specimens assignable to this clade. In many instances the taxonomic status of species could be confirmed, which is the case in Caiman brevirostris, Globidentosuchus brevirostris, and Purussaurus mirandai, and novel osteological data is presented to corroborate previous anatomical descriptions. In other cases, specimens needed to be reassigned to different taxa; with material previously identified as Caiman lutescens now considered as belonging to either Caiman latirostris or Caiman wannlangstoni, and material of Melanosuchus fisheri reassigned to Caimaninae aff. Melanosuchus fisheri. Furthermore, Mourasuchus nativus is considered to be a junior synonym of Mourasuchus arendsi herein. This suggests that there are only three species of the duck-billed caimanine Mourasuchus present in the Miocene of South America, having colonised the continent from the northwest (Colombia and Peru) during the middle Miocene and moving to the east and southeast (Venezuela, Brazil and Argentina) in the late Miocene. Other specimens, which were previously identified as belonging to the genus Caiman, lack diagnostic features of the modern genus and are instead considered as Caimaninae indet. Besides improving the knowledge of the late Miocene crocodylians of South America, our results confirm the high taxonomic diversity of the fauna and the outstanding level of sympatry previously reported for the Urumaco Formation

    Crushed but not lost: a colubriform snake (Serpentes) from the Miocene Swiss Molasse, identified through the use of micro-CT scanning technology

    Full text link
    An incomplete postcranial skeleton of a snake from the middle Miocene of the Swiss Molasse in Käpfnach mine, near Zurich, Switzerland, is described in this paper. The skeleton is rather crushed and resting on a block of coal, with only some articulated vertebrae partially discerned via visual microscopy. We conducted micro-CT scanning in the specimen and we digitally reconstructed the whole preserved vertebral column, allowing a direct and detailed observation of its vertebral morphology. Due to the flattened nature of the fossil specimen, several individual vertebral structures are deformed, not permitting thus a secure precise taxonomic identification. Accordingly, we only refer the specimen to as Colubriformes indet. Nevertheless, this occurrence adds to the exceedingly rare fossil record of snakes from Switzerland, which had so far been formally described solely from three other Eocene and Miocene localities

    Numerical approximation of statistical solutions of scalar conservation laws

    Full text link
    We propose efficient numerical algorithms for approximating statistical solutions of scalar conservation laws. The proposed algorithms combine finite volume spatio-temporal approximations with Monte Carlo and multi-level Monte Carlo discretizations of the probability space. Both sets of methods are proved to converge to the entropy statistical solution. We also prove that there is a considerable gain in efficiency resulting from the multi-level Monte Carlo method over the standard Monte Carlo method. Numerical experiments illustrating the ability of both methods to accurately compute multi-point statistical quantities of interest are also presented

    Aging the oldest turtles: the placodont affinities of Priscochelys hegnabrunnensis

    Full text link
    Priscochelys hegnabrunnensis, a fragmentary piece of armour shell from the Muschelkalk of Germany (Upper Triassic) with few diagnostic morphological features, was recently proposed to represent the oldest known stem turtle. As such, the specimen is of high importance because it shifts the date of the first appearance of turtles back about 20 Ma, which equals about 10% of the total stratigraphic range of the group. In this paper, I present new morphologic, histologic and neutron tomographic (NT) data that relate to the microstructure of the bone of the specimen itself. In opposition to the previous morphologic descriptions, P. hegnabrunnensis was found to share several distinctive features (i.e. bone sutures congruent with scute sulci, absence of a diploe structure with interior cancellous bone, thin vascular canals radiating outwards from distinct centres in each field and rugose ventral bone surface texture consisting of mineralised fibre bundles) with cyamodontoid placodonts (Diapsida: Sauropterygia) and fewer with stem turtles (i.e. depth of sulci). Two aspects that were previously thought to be relevant for the assignment to the turtle stem (conical scutes and presence of foramina) are argued to be of dubious value. P. hegnabrunnensis is proposed to represent a fragmentary piece of cyamodontoid armour consisting of fused conical plates herein. The specimen is not a part of the turtle stem and thus does not represent the oldest turtle. Accordingly, P. hegnabrunnensis does not shorten the ghost lineage to the potential sister group of turtles

    An evolutionary and developmental perspective on the loss of regionalization in the limbs of derived ichthyosaurs

    Get PDF
    Ichthyosaurs, a lineage of extinct Mesozoic marine reptiles, have garnered attention in both the palaeontological and developmental literature for the unique limb morphology seen in derived genera. These morphologies include an increase in the number of phalanges per digit (hyperphalangy) and in the number of digits (hyperdactyly), but most interestingly also a shift in element identity. Elements distal to the stylopodium acquire characteristics of mesopodial elements, such as a rounded, nodular shape and a loss of perichondral bone on the anterior and posterior surfaces. Here, we examine numerous aspects of the loss of proximodistal identity in ichthyosaur limbs including phylogenetic progression of the loss of perichondral bone, histology and microstructure of the elements retaining perichondral bone in derived taxa, and correlates of intraspecific variation in degree of perichondral bone reduction in a derived ichthyosaur, Stenopterygius quadriscissus. Results show that loss of limb element identity occurred progressively over ichthyosaurian evolution, and the notches seen on the anterior surface of limb elements in derived ichthyosaurs are homologous to the long bone shafts in terrestrial tetrapods. Variation in the number of notches in S. quadriscissus can best be explained through delayed ossification of the anterior perichondrium, indicating a heterochronic component to the loss of identity. We propose a developmental mechanism - gradual expansion of the polyalanine region of HoxD13 over ichthyosaurian evolution - to explain the progressive loss of limb regionalization as well as the heterochronic delay in perichondral ossificatio

    Semicircular canal shape diversity among modern lepidosaurs: life habit, size, allometry

    Full text link
    Background: The shape of the semicircular canals of the inner ear of living squamate reptiles has been used to infer phylogenetic relationships, body size, and life habits. Often these inferences are made without controlling for the effects of the other ones. Here we examine the semicircular canals of 94 species of extant limbed lepidosaurs using three-dimensional landmark-based geometric morphometrics, and analyze them in phylogenetic context to evaluate the relative contributions of life habit, size, and phylogeny on canal shape. Result: Life habit is not a strong predictor of semicircular canal shape across this broad sample. Instead, phylogeny plays a major role in predicting shape, with strong phylogenetic signal in shape as well as size. Allometry has a limited role in canal shape, but inner ear size and body mass are strongly correlated. Conclusions: Our wide sampling across limbed squamates suggests that semicircular canal shape and size are predominantly a factor of phylogenetic relatedness. Given the small proportion of variance in semicircular canal shape explained by life habit, it is unlikely that unknown life habit could be deduced from semicircular canal shape alone. Overall, semicircular canal size is a good estimator of body length and even better for body mass in limbed squamates. Semiaquatic taxa tend to be larger and heavier than non-aquatic taxa, but once body size and phylogeny are accounted for, they are hard to distinguish from their non-aquatic relatives based on bony labyrinth shape and morphology

    A large osteoderm-bearing rib from the Upper Triassic Kössen Formation (Norian/Rhaetian) of eastern Switzerland

    Full text link
    An important component of the Alpine vertebrate record of Late Triassic age derives from the Kössen Formation, which crops out extensively in the eastern Alps. Here, we present an isolated and only partially preserved large rib, which carries an osteoderm on a low uncinate process. Osteological comparison indicates that the specimen likely belongs to a small clade of marine reptiles, Saurosphargidae. Members of the clade are restricted to the western (today Europe) and eastern margins of the Tethys (today China) and were so far known only from the Anisian stage of the Middle Triassic. The assignment of the new find to cf. Saurosphargidae, with potential affinities to the genus Largocephalosaurus from the Guanling Formation of Yunnan and Guizhou Provinces, China, would extend the occurrence of the clade about 35 million years into the Late Triassic

    Limb histology of the Triassic stem turtles Proterochersis porebensis Szczygielski & Sulej, 2016 and Proganochelys quenstedtii Baur, 1887 with insights into growth patterns of early turtles

    Full text link
    Data on turtle limb bone histology and microstructure are spotty, especially for Mesozoic taxa, despite significant progress made in recent years. Here we provide first detailed information on the stylopodia of the Late Triassic stem turtles Proganochelys quenstedtii Baur, 1887 from Switzerland and Proterochersis porebensis Szczygielski & Sulej, 2016 from Poland. In both taxa we observed large, internal medullary regions filled with endosteal trabeculae and poorly to moderately vascularized parallel-fibered (grading locally to lamellar) periosteal cortices. Primary vasculature is predominantly longitudinal, in Proterochersis porebensis locally with radial inclination. In large specimens, secondary remodeling is significant in the deeper cortex, but it neither completely obliterates the primary tissue nor reaches the external surface of the bone in either taxon. Comparison of histological data, limb morphology, shell and limb lengths as well as proportions reveal differences in growth patterns between the taxa: Proganochelys quenstedtii seems to grow faster during early life stages than Proterochersis porebensis and attained distinctly larger body sizes earlier in ontogeny, even though the asymptotic body size is roughly the same for both species. Overall, the histological and microstructural characteristics of stylopodial bones of Triassic turtles more closely resemble those of more recent representatives of that group than earlier stem turtles
    corecore