93 research outputs found

    Effects of housing, perches, genetics, and 25-hydroxycholecalciferol on keel bone deformities in laying hens

    Get PDF
    Several studies have shown a high prevalence of keel bone deformities in commercial laying hens. The aim of this project was to assess the effects of perch material, a vitamin D feed additive (25-hydroxyvitamin D3; HyD, DSM Nutritional Products, Basel, Switzerland), and genetics on keel bone pathology. The study consisted of 2 experiments. In the first experiment, 4,000 Lohmann Selected Leghorn hens were raised in aviary systems until 18 wk of age. Two factors were investigated: perch material (plastic or rubber-coated metal) and feed (with and without HyD). Afterward, the hens were moved to a layer house with 8 pens with 2 aviary systems. Daily feed consumption, egg production, mortality, and feather condition were evaluated. Every 6 wk, the keel bones of 10 randomly selected birds per pen were palpated and scored. In the second experiment, 2,000 Lohmann Brown (LB) hens and 2,000 Lohmann Brown parent stock (LBPS) hens were raised in a manner identical to the first experiment. During the laying period, the hens were kept in 24 identical floor pens but equipped with different perch material (plastic or rubber-coated metal). The same variables were investigated as in the first experiment. No keel bone deformities were found during the rearing period in either experiment. During the laying period, deformities gradually appeared and reached a prevalence of 35% in the first experiment and 43.8% in the second experiment at the age of 65 and 62 wk, respectively. In the first experiment, neither HyD nor the aviary system had any significant effect on the prevalence of keel bone deformities. In the second experiment, LBPS had significantly fewer moderate and severe deformities than LB, and rubber-coated metal perches were associated with a higher prevalence of keel bone deformities compared with plastic perches. The LBPS laid more but smaller eggs than the LB. Again, HyD did not affect the prevalence of keel bone deformities. However, the significant effect of breed affiliation strongly indicates a sizeable genetic component that may provide a basis for targeted selectio

    Tourism and water inequity in Bali: A social-ecological systems analysis

    Get PDF
    This paper is a social-ecological systems (SES) analysis of tourism and water inequity in Bali. It uses Elinor Ostrom’s SES model to look at the particular niche of Bali’s tourism and water nexus. Re-analysis of previous qualitative research revealed that the vulnerability of the SES was due to numerous characteristics. In particular, user groups are highly diverse, transient and stratified, thereby inhibiting communication and knowledge sharing. This, in combination with weak governance systems and the economic power of the tourism industry, interact to affect declining water resources and the iniquitous impact of this. Whilst there are obvious indications that Bali’s water resources are over stretched, there is no feedback loop to the institutional structures that would help enable appropriate responses from the user groups or governance system

    Fuzzy logic control of mechanical ventilation during anaesthesia.

    Get PDF
    We have examined a new approach, using fuzzy logic, to the closed-loop feedback control of mechanical ventilation during general anaesthesia. This control system automatically adjusts ventilatory frequency (f) and tidal volume (VT) in order to achieve and maintain the end-tidal carbon dioxide fraction (FE'CO2) at a desired level (set-point). The controller attempts to minimize the deviation of both f and VT per kg body weight from 10 bpm and 10 ml kg-1, respectively, and to maintain the plateau airway pressure within suitable limits. In 30 patients, undergoing various surgical procedures, the fuzzy control mode was compared with human ventilation control. For a set-point of FE'CO2 = 4.5 vol% and during measurement periods of 20 min, accuracy, stability and breathing pattern did not differ significantly between fuzzy logic and manual ventilation control. After step-changes in the set-point of FE'CO2 from 4.5 to 5.5 vol% and vice versa, overshoot and rise time did not differ significantly between the two control modes. We conclude that to achieve and maintain a desired FE'CO2 during routine anaesthesia, fuzzy logic feedback control of mechanical ventilation is a reliable and safe mode of control

    Microstructure assessment of the low activation ferritic/martensitic steel F82H

    No full text
    The microstructure of the low activation F82H ferritic/martensitic steel has been investigated in the cases of the heat treated, irradiated and deformed material. The irradiation has been achieved with 590 MeV protons in the Proton IRradiation EXperiment (PIREX) facility to a dose of 0.5 dpa at a temperature of 523 K. The unirradiated material was deformed in tension to failure at room temperature. The dislocations character as well as the dislocation density are determined. The carbide chemical composition and the size distribution of the carbides are assessed. (C) 1998 Elsevier Science B.V. All rights reserved
    • …
    corecore