3,510 research outputs found

    The Relation between Radio Polarization and Gamma-ray Emission in AGN Jets

    Full text link
    We have compared the parsec-scale jet linear polarization properties of the Fermi LAT-detected and non-detected sources in the complete flux-density-limited (MOJAVE-1) sample of highly beamed AGN. Of the 123 MOJAVE sources, 30 were detected by the LAT during its first three months of operation. We find that during the era since the launch of Fermi, the unresolved core components of the LAT-detected jets have significantly higher median fractional polarization at 15 GHz. This complements our previous findings that these LAT sources have higher apparent jet speeds, brightness temperatures and Doppler factors, and are preferentially found in higher activity states.Comment: 6 pages, 3 figures, to appear in the proceedings of "High Energy Phenomena In Relativistic Outflows II" (Buenos Aires, Argentina, October 26-30, 2009) International Journal of Modern Physics

    Catching the Radio Flare in CTA 102 III. Core-Shift and Spectral Analysis

    Get PDF
    The temporal and spatial spectral evolution of the jets of AGN can be studied with multi-frequency, multi-epoch VLBI observations. The combination of both, morphological and spectral parameters can be used to derive source intrinsic physical properties such as the magnetic field and the non-thermal particle density. In the first two papers of this series, we analyzed the single-dish light curves and the VLBI kinematics of the blazar CTA 102 and suggested a shock-shock interaction between a traveling and a standing shock wave as a possible scenario to explain the observed evolution of the component associated to the 2006 flare. In this paper we investigate the core-shift and spectral evolution to test our hypothesis of a shock-shock interaction. We used 8 multi-frequency VLBA observations to analyze the temporal and spatial evolution of the spectral parameters during the flare. We observed CTA 102 between May 2005 and April 2007 using the VLBA at six different frequencies spanning from 2 - 86 GHz. After the calibrated VLBA images were corrected for opacity, we performed a detailed spectral analysis. From the derived values we estimated the magnetic field and the density of the relativistic particles. The detailed analysis of the opacity shift reveals that the position of the jet core is proportional to nu^-1 with some temporal variations. The value suggests possible equipartition between magnetic field energy and particle kinetic energy densities at the most compact regions. From the variation of the physical parameters we deduced that the 2006 flare in CTA 102 is connected to the ejection of a new traveling feature (t=2005.9) and the interaction between this shock wave and a stationary structure around 0.1 mas from the core. The source kinematics together with the spectral and structural variations can be described by helical motions in an over-pressured jet.Comment: 35 pages, 46 figure

    Turnstile behaviour of the Cooper-pair pump

    Full text link
    We have experimentally studied the behaviour of the so-called Cooper pair pump (CPP) with three Josephson junctions, in the limit of small Josephson coupling EJ < EC. These experiments show that the CPP can be operated as a traditional turnstile device yielding a gate-induced current 2ef in the direction of the bias voltage, by applying an RF-signal with frequency f to the two gates in phase, while residing at the degeneracy node of the gate plane. Accuracy of the CPP during this kind of operation was about 3% and the fundamental Landau-Zener limit was observed to lie above 20 MHz. We have also measured the current pumped through the array by rotating around the degeneracy node in the gate plane. We show that this reproduces the turnstile-kind of behavior. To overcome the contradiction between the obtained e-periodic DC-modulation and a pure 2e-behaviour in the RF-measurements, we base our observations on a general principle that the system always minimises its energy. It suggests that if the excess quasiparticles in the system have a freedom to tunnel, they will organize themselves to the configuration yielding the highest current.Comment: 29 pages, 16 figures, uses REVTeX and graphicx-packag

    The connection between the radio jet and the gamma-ray emission in the radio galaxy 3C 120

    Get PDF
    We present the analysis of the radio jet evolution of the radio galaxy 3C 120 during a period of prolonged gamma-ray activity detected by the Fermi satellite between December 2012 and October 2014. We find a clear connection between the gamma-ray and radio emission, such that every period of gamma-ray activity is accompanied by the flaring of the mm-VLBI core and subsequent ejection of a new superluminal component. However, not all ejections of components are associated with gamma-ray events detectable by Fermi. Clear gamma-ray detections are obtained only when components are moving in a direction closer to our line of sight.This suggests that the observed gamma-ray emission depends not only on the interaction of moving components with the mm-VLBI core, but also on their orientation with respect to the observer. Timing of the gamma-ray detections and ejection of superluminal components locate the gamma-ray production to within almost 0.13 pc from the mm-VLBI core, which was previously estimated to lie about 0.24 pc from the central black hole. This corresponds to about twice the estimated extension of the broad line region, limiting the external photon field and therefore suggesting synchrotron self Compton as the most probable mechanism for the production of the gamma-ray emission. Alternatively, the interaction of components with the jet sheath can provide the necessary photon field to produced the observed gamma-rays by Compton scattering.Comment: Already accepted for publication in The Astrophysical Journa
    corecore