12 research outputs found

    Nucleation and Growth of TiO2 Nanoparticles

    Get PDF

    A facile route for preparation of CdS nanoparticles

    No full text
    CdS nanoparticles have been synthesized by a chemical reaction route using ethylenediamine as a complexing agent. The nanoparticles were characterized using techniques such as X-ray powder diffraction (XRD), scanning electron microscope (SEM), UV–VIS absorption spectroscopy, and photoluminescence spectroscopy. The absorption edge for the bulk hexagonal CdS is at 512 nm (2.42 eV). Comparing with the bulk CdS, it is believed that the blue shift in the absorption peak was caused by the quantum confinement effect. Photoluminescence measurements indicate CdS nanoparticles show fluorescence band with a maximum close to 315 nm

    Template-based growth of TiO₂ nanorods by sol-gel process

    No full text
    In this paper, the preparation of TiO2 nanorods by sol-gel-template process has been considered. The prepared sols were characterized by using FTIR spectroscopy, and the obtained nanorods were characterized by X-ray diffraction and SEM microscopy. SEM images show that TiO2 nanorods with uniform diameter of about 100-200 nm and a length of several micrometers. The results of XRD indicated that the TiO₂ nanorods were crystallized in the anatase and rutile phases after annealing to 400-700 ºC up to 2 hours

    Study on the Phase Transformation Kinetics of Sol-Gel Drived TiO 2 Nanoparticles

    No full text
    Titanium dioxide nanopowders were synthesized by the diffusion controlled sol-gel process (LaMer model) and characterized by DTA-TG, XRD, and SEM. The prepared TiO 2 nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks on the base of Avrami equation. The stating point of anatase-rutile phase transformation temperature in the prepared nanoparticles was found between 100 and 200 • C. A decreasing trend on the intensity of X-ray peaks of anatase phase was observed up to 600 • C when the presence of the rutile phase became predominant. Results indicated that the transition kinetics of the diffusion controlled prepared nanoparticles was begun at low temperature, and it can be concluded that the nucleation and growth sites in these particles were more than other. However, it has been found that the nucleation activation energy of rutile phase was 20 kj/mol, and it is the lowest reported activation energy

    Study on the Phase Transformation Kinetics of Sol-Gel Drived TiO

    No full text
    Titanium dioxide nanopowders were synthesized by the diffusion controlled sol-gel process (LaMer model) and characterized by DTA-TG, XRD, and SEM. The prepared TiO2 nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks on the base of Avrami equation. The stating point of anatase-rutile phase transformation temperature in the prepared nanoparticles was found between 100 and 200°C. A decreasing trend on the intensity of X-ray peaks of anatase phase was observed up to 600°C when the presence of the rutile phase became predominant. Results indicated that the transition kinetics of the diffusion controlled prepared nanoparticles was begun at low temperature, and it can be concluded that the nucleation and growth sites in these particles were more than other. However, it has been found that the nucleation activation energy of rutile phase was 20 kj/mol, and it is the lowest reported activation energy

    Impact of nanostructured thin ZnO film in ultraviolet protection

    No full text
    Morteza Sasani Ghamsari,1 Sanaz Alamdari,1 Wooje Han,2 Hyung-Ho Park2 1Laser and Optics Research School, Nuclear Science and Technology Research Institute, Tehran, Iran; 2Department of Materials Science and Engineering, Yonsei University, Seoul, South Korea Abstract: Nanoscale ZnO is one of the best choices for ultraviolet (UV) protection, not only because of its antimicrobial properties but also due to its potential application for UV preservation. However, the behavior of nanostructured thin ZnO films and long-term effects of UV-radiation exposure have not been studied yet. In this study, we investigated the UV-protection ability of sol gel-derived thin ZnO films after different exposure times. Scanning electron microscopy, atomic force microscopy, and UV-visible optical spectroscopy were carried out to study the structure and optical properties of the ZnO films as a function of the UV-irradiation time. The results obtained showed that the prepared thin ZnO films were somewhat transparent under the visible wavelength region and protective against UV radiation. The UV-protection factor was 50+ for the prepared samples, indicating that they were excellent UV protectors. The deposited thin ZnO films demonstrated promising antibacterial potential and significant light absorbance in the UV range. The experimental results suggest that the synthesized samples have potential for applications in the health care field. Keywords: ZnO, sol gel, thin film, UV protectio
    corecore