2,163 research outputs found

    Description and molecular phylogeny of a new and one known needle nematode of the genus Paralongidorus (Nematoda: Longidoridae) from grapevine in Portugal

    Get PDF
    A new and a known longidorid nematode, Paralongidorus lusitanicus n. sp. and Paralongidorus plesioepimikis, are described and illustrated from populations extracted from soil associated with grapevine (Vitis vinifera L.) from Escaroupim and Pó (central-Western Portugal), respectively. The new needle nematode P. lusitanicus n. sp. is characterised by a very large body size (8072–12,022 μm), an expanded and rounded lip region, ca 30 μm wide, with a clear constriction followed by a depression posterior to the amphidial aperture, amphidial fovea very large (11.0–19.0 μm), stirrup-shaped, with conspicuous slit-like aperture as shown in scanning electron microscopy studies, a very long and flexible odontostyle (180.0–223.0 μm), guiding ring located at 28.0–41.5 μm from anterior end, vulva anterior to the mid-body (34–41%), a dorsally convex-conoid tail with rounded terminus (29–42 μm long), bearing two or three pairs of caudal pores and males common (ratio 1:1.6 females) with spicules ca 80 μm long. Morphological and morphometric traits for P. plesioepimikis fit well with the original description, and is reported for the first time in Portugal. Integrative diagnosis of both species was completed with molecular data obtained using D2-D3 expansion segments of 28S rDNA, ITS1-rDNA and partial 18S–rDNA. The phylogenetic relationships of these species with other Paralongidorus spp. using these three molecular markers indicated that P. lusitanicus n. sp. clustered together with other Paralongidorus spp. forming a sister clade with P. plesioepimikis, both of them sharing a large body, long odontostyle, an anteriorly located vulva and an expanded and rounded lip region with a clear constriction followed by a depression posterior to the amphidial aperture

    Family relations, parents’ educational practices, and Angolan adolescents’ values

    Get PDF
    The purpose of this study was three-fold. First, to analyze psychometric properties of the instruments used to evaluate the perceived Family relations, Familiar socialization and Angolan adolescents’ Values. Second, to predict the adolescents’ Values based on Family relations and Family socialization.Third, to analyze adolescents’ Values sex differences. For this aim, 917 adolescents (384 males, 533 females) ages 14 to 17 years (M = 15.68; SD = 1.06)completed Portuguese translations of the Family relations, Family socialization and Value questionnaires. When psychometric properties of the instruments were assessed, a Structural Equation Model (SEM) controlling for sex was carried out, with Family relations and Family socialization as independent variables, and adolescents’ Values as dependent variables. Results showed acceptable psychometric properties of the Portuguese versions of the instruments. Related to the SEM, Familiar functioning predicted Achievement, Universalism, Securityand Conformity; Parents’ Support predicted Benevolence and Conformity; Family difficulties were negatively related with Achievement and Conformity; and Punishment/coercion were negatively related with Achievement, Benevolence and Conformity. The sex variable only differentiated two adolescents’ values. Boys assigned priority to Universalism and girls assigned priority to Conformity. These findings are discussed with regard to the implications to adolescents’ socialization

    220604

    Get PDF
    This research proposes a novel minimal-overlap centrality-driven gateway designation method for real-time wireless sensor networks (WSNs). The goal is to enhance network schedulability by design, particularly, by exploiting the relationship between path node-overlaps and gateway designation. To this aim, we define a new metric termed minimal-overlap network centrality which characterizes the overall overlapping degree between all the active flows in the network when a given node is selected as gateway. The metric is then used to designate as gateway the node which produces the least overall number of path overlaps. For the purposes of evaluation, we assume a time-synchronized channel-hopping (TSCH) WSN under centralized earliest-deadline-first (EDF) scheduling and shortest-path routing. The assessment of the WSN traffic schedulability suggests our approach is dominant over classical network centrality metrics, namely, eigenvector, closeness, betweenness, and degree. Notably, it achieves up to 50% better schedulability than a degree centrality benchmark.This work was partially supported by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER Research Unit (UIDB/04234/2020); by the Operational Competitiveness Programme and Internationalization (COMPETE 2020) under the PT2020 Agreement, through the European Regional Development Fund (ERDF); also by FCT and the ESF (European Social Fund) through the Regional Operational Programme (ROP) Norte 2020, under PhD grant 2020.06685.BDN/

    Actomyosin modulation by peroxynitrite

    Get PDF
    In the present work we address the oxidative modifications accounting for the structural and functional impairment of the actomyosin complex under the oxidative stress mediated by peroxynitrite (ONOO-). Experiments on purified myosin and actin have shown that submicromolar ONOO- concentrations produce strong inhibition of the F-actin stimulated myosin ATPase activity. The peroxynitrite-induced actomyosin impairment correlated with structural modifications that decrease the thermal stability of both actin and myosin leading to partially unfolded states. The results suggest a major role for the highly reactive cysteines on actin and on myosin and also for some critical methionines on G-actin. 3-nitrotyrosine does not contribute significantly to the observed functional alterations

    EDF Scheduling and Minimal-Overlap Shortest-Path Routing for Real-Time TSCH Networks

    Get PDF
    With the scope of Industry 4.0 and the Industrial Internet of Things (IIoT), wireless technologies have gained momentum in the industrial realm. Wireless standards such as WirelessHART, ISA100.11a, IEEE 802.15.4e and 6TiSCH are among the most popular, given their suitability to support real-time data traffic in wireless sensor and actuator networks (WSAN). Theoretical and empirical studies have covered prioritized packet scheduling in extenso, but only little has been done concerning methods that enhance and/or guarantee real-time performance based on routing decisions. In this work, we propose a greedy heuristic to reduce overlap in shortest-path routing for WSANs with packet transmissions scheduled under the earliest-deadline-first (EDF) policy. We evaluated our approach under varying network configurations and observed remarkable dominance in terms of the number of overlaps, transmission conflicts, and schedulability, regardless of the network workload and connectivity. We further observe that well-known graph network parameters, e.g., vertex degree, density, betweenness centrality, etc., have a special influence on the path overlaps, and thus provide useful insights to improve the real-time performance of the network.info:eu-repo/semantics/publishedVersio

    230502

    Get PDF
    In urban road transportation, intersections are traffic bottlenecks with increased waiting delays and associated adverse effects. A recently proposed intelligent intersection management (IIM) approach, the Synchronous Intersection Management Protocol (SIMP), synchronizes the vehicles access to simple single-lane isolated intersections, outperforming competing approaches in various performance metrics. In this paper, we apply SIMP to multi-lane intersections, increasing significantly the applicability of the protocol while dealing with the additional complexity emerging from the multiple crossing conflicts. Using the SUMO simulator, we compare the performance of SIMP with two conventional (Round-Robin - RR and Trivial Traffic Light Control - TTLC) and two IIM approaches (Intelligent Traffic Light Control - ITLC and Q-learning based Traffic Light Control - QTLC) under continuous and interrupted upstream traffic flows scenarios in urban settings. The results using a maximum speed of 30km/h confirm the superiority of SIMP, improving traffic throughput (~14.4%) and reducing travel delays (~64.4%) and associated fuel consumption (~25.5%) when compared to the best of the other approaches.This work was supported in part by the National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology) within the CISTER Research Unit under Grant UIDP/UIDB/04234/2020, in part by FCT and the Portuguese National Innovation Agency (ANI) under the CMU Portugal Partnership through the European Regional Development Fund (ERDF) of the Operational Competitiveness Programme and Internationalization (COMPETE 2020) under the PT2020 Partnership Agreement within the Project FLOYD under Grant 45912 and Grant POCI-01-0247-FEDER-045912, and in part by FCT under Ph.D. work under Grant 2021.05004.BD.info:eu-repo/semantics/publishedVersio

    230702

    Get PDF
    This article presents a novel centrality-driven gateway designation framework for the improved real-time performance of low-power wireless sensor networks (WSNs) at system design time. We target time-synchronized channel hopping (TSCH) WSNs with centralized network management and multiple gateways with the objective of enhancing traffic schedulability by design. To this aim, we propose a novel network centrality metric termed minimal-overlap centrality that characterizes the overall number of path overlaps between all the active flows in the network when a given node is selected as gateway. The metric is used as a gateway designation criterion to elect as a gateway the node leading to the minimal number of overlaps. The method is then extended to multiple gateways with the aid of the unsupervised learning method of spectral clustering. Concretely, after a given number of clusters are identified, we use the new metric at each cluster to designate as cluster gateway the node with the least overall number of overlaps. Extensive simulations with random topologies under centralized earliest-deadline-first (EDF) scheduling and shortest-path routing suggest our approach is dominant over traditional centrality metrics from social network analysis, namely, eigenvector, closeness, betweenness, and degree. Notably, our approach reduces by up to 40% the worst-case end-to-end deadline misses achieved by classical centrality-driven gateway designation methods.This work was partially supported by National Funds through FCT/MCTES (Portuguese Foundation for Science and Technology), within the CISTER Research Unit (UIDB/04234/2020); by the Operational Competitiveness Programme and Internationalization (COMPETE 2020) under the PT2020 Agreement, through the European Regional Development Fund (ERDF); also by FCT and the ESF (European Social Fund) through the Regional Operational Programme (ROP) Norte 2020, under PhD grant 2020.06685.BD.info:eu-repo/semantics/publishedVersio
    • …
    corecore