405 research outputs found

    CCAAT/enhancer-binding proteins are key regulators of human type two deiodinase expression in a placenta cell line

    Get PDF
    An appropriate concentration of intracellular T(3) is a critical determinant of placenta development and function and is mainly controlled by the activity of type II deiodinase (D2). The levels of this enzyme are finely regulated in different tissues by coordinated transcriptional mechanisms, which rely on dedicated promoter sequences (e.g. cAMP response element and TATA elements) that impart inducibility and tissue specificity to Dio2 mRNA expression. Here we show that CCAAT enhancer-binding proteins α and β (C/EBPα and C/EBPβ) promote Dio2 expression in the trophoblastic cell line JEG3 through a conserved CCAAT element, which is a novel key component of the Dio2 promoter code that confers tissue-specific expression of D2 in these cells. Increased C/EBPs levels potently induce Dio2 transcription, whereas their ablation results in loss of Dio2 mRNA. By measuring the activity of several deletion and point mutant promoter constructs, we have identified the functional CCAAT element responsible for this effect, which is located in close proximity to the most 5' TATA box. Notably, this newly identified sequence is highly conserved throughout the species and binds in vivo and in vitro C/EBP, indicating the relevance of this regulatory mechanism. Together, our results unveil a novel mechanism of regulation of D2 expression in a trophoblastic cell line, which may play a relevant role during placenta development

    A description of the methodology used in an overview of reviews to evaluate evidence on the treatment, harms, diagnosis/ classification, prognosis and outcomes used in the management of neck pain

    Get PDF
    Background: Neck Pain (NP) is a common musculoskeletal disorder and the literature provides conflicting evidence about its management. Objective: To describe the methodology used to conduct an overview of reviews (OvR) and to characterize the distribution and risk of bias profiles across the evidence for all areas of NP management. Methods: Standard systematic review (SR) methodology was employed. MEDLINE, CINAHL, EMBASE, ILC, Cochrane CENTRAL, and LILACS were searched from 2000 to March 2012; Narrative and SR and clinical practice guidelines (CPG) evaluating the efficacy of treatment (benefits and harms), diagnosis/classification, prognosis, and outcomes were eligible. For treatment, articles were limited to SRs from 2005 forward. Risk of bias of SR was assessed with the AMSTAR; the AGREE II was used to critically appraise the CPGs. Results: From 2476 articles, 508 were eligible for full text screening. A total of 341 articles were included. Treatment (n=117) had the greatest yield. Other clinical areas had less literature (diagnosis=54, prognosis=16, outcomes=27, harms=16). There were no SR for classification and narrative reviews were problematic for this topic. There was great overlap across different databases within each clinical area except for those for outcome measures. Risk of bias assessment using the AMSTAR of eligible SRs showed a similar trend across different clinical areas. Conclusion: A summary of methods used to review the literature in five clinical areas of NP management have been described. The challenges of selecting and synthesizing eligible articles in an OvR required customized solutions across different areas of clinical focus

    Diagnostic accuracy of ultrasonographic features in detecting thyroid cancer in the transition age: a meta-analysis

    Get PDF
    Context: Significant uncertainty exists about the diagnostic accuracy of ultrasonographic (US) features used to predict the risk of thyroid cancer in the pediatric population. Moreover, there are no specific indications for thyroid nodule evaluation in patients during the transition age. Objective: The meta-analysis aimed to address the following question: which thyroid nodule US features have the highest accuracy in predicting malignancy in the transition age. Methods: We performed a meta-analysis of observational/cohort/diagnostic accuracy studies dealing with thyroid nodule sonography, reporting US features, and using histology as a reference standard for the diagnosis of malignancy and histology or cytology for the diagnosis of benignity in the transition age (mean/median age 12-21 years). Results: The inclusion criteria were met by 14 studies, published between 2005 and 2020, including 1306 thyroid nodules (mean size 17.9 mm) from 1168 subjects. The frequency of thyroid cancer was 36.6%. The US features with the highest diagnostic odds ratio (DOR) for malignancy were the presence of suspicious lymph nodes (DOR: 56.0 (95% CI: 26.0-119.0)), a 'taller than wide' shape of the nodule (6.0 (95% CI: 2.0-16.0)), the presence of microcalcifications (13.0 (95% CI: 6.0-29.0)) and irregular margins (9.0 (95% CI: 5.0- 17.0)). Heterogeneity among the studies was substantial. Conclusions: Following the diagnosis of a thyroid nodule in the transition age, a thorough US examination of the neck is warranted. The detection of suspicious lymph nodes and/ or thyroid nodules with a 'taller than wide' shape, microcalcifications, and irregular margins is associated with the highest risk of malignancy in the selection of nodules candidates for biopsy

    Chromosome Mis-segregation Generates Cell-Cycle-Arrested Cells with Complex Karyotypes that Are Eliminated by the Immune System

    Get PDF
    Aneuploidy, a state of karyotype imbalance, is a hallmark of cancer. Changes in chromosome copy number have been proposed to drive disease by modulating the dosage of cancer driver genes and by promoting cancer genome evolution. Given the potential of cells with abnormal karyotypes to become cancerous, do pathways that limit the prevalence of such cells exist? By investigating the immediate consequences of aneuploidy on cell physiology, we identified mechanisms that eliminate aneuploid cells. We find that chromosome mis-segregation leads to further genomic instability that ultimately causes cell-cycle arrest. We further show that cells with complex karyotypes exhibit features of senescence and produce pro-inflammatory signals that promote their clearance by the immune system. We propose that cells with abnormal karyotypes generate a signal for their own elimination that may serve as a means for cancer cell immunosurveillance. By examining the immediate consequences of chromosome mis-segregation, Santaguida et al. show that aneuploidy causes genomic instability and the evolution of cells with complex karyotypes. Such cells undergo senescence and produce pro-inflammatory cytokines that promote their clearance by natural killer cells. Keywords: aneuploidy; cancer; immune system; genome instability; senescenceNational Institutes of Health (U.S.) (Grant CA206157)National Institutes of Health (U.S.) (Grant GM118066)National Institute of General Medical Sciences (U.S.) (Grant T32GM007753

    Protein aggregation mediates stoichiometry of protein complexes in aneuploid cells

    Get PDF
    Aneuploidy, a condition characterized by chromosome gains and losses, causes reduced fitness and numerous cellular stresses, including increased protein aggregation. Here, we identify protein complex stoichiometry imbalances as a major cause of protein aggregation in aneuploid cells. Subunits of protein complexes encoded on excess chromosomes aggregate in aneuploid cells, which is suppressed when expression of other subunits is coordinately altered. We further show that excess subunits are either degraded or aggregate and that protein aggregation is nearly as effective as protein degradation at lowering levels of excess proteins. Our study explains why proteotoxic stress is a universal feature of the aneuploid state and reveals protein aggregation as a form of dosage compensation to cope with disproportionate expression of protein complex subunits

    Monopolin subunit Csm1 associates with MIND complex to establish monopolar attachment of sister kinetochores at meiosis I

    Get PDF
    Sexually reproducing organisms halve their cellular ploidy during gametogenesis by undergoing a specialized form of cell division known as meiosis. During meiosis, a single round of DNA replication is followed by two rounds of nuclear divisions (referred to as meiosis I and II). While sister kinetochores bind to microtubules emanating from opposite spindle poles during mitosis, they bind to microtubules originating from the same spindle pole during meiosis I. This phenomenon is referred to as mono-orientation and is essential for setting up the reductional mode of chromosome segregation during meiosis I. In budding yeast, mono-orientation depends on a four component protein complex referred to as monopolin which consists of two nucleolar proteins Csm1 and Lrs4, meiosis-specific protein Mam1 of unknown function and casein kinase Hrr25. Monopolin complex binds to kinetochores during meiosis I and prevents bipolar attachments. Although monopolin associates with kinetochores during meiosis I, its binding site(s) on the kinetochore is not known and its mechanism of action has not been established. By carrying out an imaging-based screen we have found that the MIND complex, a component of the central kinetochore, is required for monopolin association with kinetochores during meiosis. Furthermore, we demonstrate that interaction of monopolin subunit Csm1 with the N-terminal domain of MIND complex subunit Dsn1, is essential for both the association of monopolin with kinetochores and for monopolar attachment of sister kinetochores during meiosis I. As such this provides the first functional evidence for a monopolin-binding site at the kinetochore

    Chapter 5: Assessing Risk of Bias as a Domain of Quality in Medical Test Studies

    Get PDF
    Assessing methodological quality is a necessary activity for any systematic review, including those evaluating the evidence for studies of medical test performance. Judging the overall quality of an individual study involves examining the size of the study, the direction and degree of findings, the relevance of the study, and the risk of bias in the form of systematic error, internal validity, and other study limitations. In this chapter of the Methods Guide for Medical Test Reviews, we focus on the evaluation of risk of bias in the form of systematic error in an individual study as a distinctly important component of quality in studies of medical test performance, specifically in the context of estimating test performance (sensitivity and specificity). We make the following recommendations to systematic reviewers: 1) When assessing study limitations that are relevant to the test under evaluation, reviewers should select validated criteria that examine the risk of systematic error, 2) categorizing the risk of bias for individual studies as “low,” “medium,” or “high” is a useful way to proceed, and 3) methods for determining an overall categorization for the study limitations should be established a priori and documented clearly
    corecore