225 research outputs found

    Temperature-induced sign change of the magnetic interlayer coupling in Ni/Ni25Mn75/Ni trilayers on Cu3Au(001)

    Get PDF
    We investigated the magnetic interlayer coupling between two ferromagnetic (FM) Ni layers through an antiferromagnetic (AFM) Ni 25Mn75 layer and the influence of this coupling on the exchange bias phenomenon. The interlayer coupling energy of an epitaxial trilayer of 14 atomic monolayers (ML) Ni/45 ML Ni 25Mn75/16 ML Ni on Cu3Au(001) was extracted from minor-loop magnetization measurements using in-situ magneto-optical Kerr effect. The interlayer coupling changes from ferromagnetic to antiferromagnetic when the temperature is increased above 300 K. This sign change is interpreted as the result of the competition between an antiparallel Ruderman-Kittel-Kasuya-Yosida (RKKY)-type interlayer coupling, which dominates at high temperature, and a stronger direct exchange coupling across the AFM layer, which is present only below the Néel temperature of the AFM layer

    Intensification of MVA and influenza virus production through high-cell-density cultivation approaches

    Get PDF
    Background. Unlike production of recombinant proteins, continuous production of viral vaccines at high cell densities (HCD) is often constrained by a decrease in cell-specific virus yields, early host cell lysis during virus propagation and limited virus recovery from culture broth. Nevertheless, advanced fed-batch [1] and perfusion strategies can be applied to achieve high-yield virus production processes. In this study, the development of a semi-continuous process for the production of the modified vaccinia Ankara virus isolate MVA-CR19 and influenza virus A/PR/8/34 (H1N1) in HCD cultivations of the suspension cell line AGE1.CR.pIX (ProBioGen AG, Berlin) is presented. Methods. Depending on the required scale, high cell concentrations (~ 50×106 cells/mL) were achieved either through medium renewal by periodic centrifugation (semi-perfusion) in 50 mL cultivations or using an alternating tangential flow (ATF) perfusion system for 1 L bioreactors. Process development and optimization comprised three phases: 1) assessment of different fed-batch and medium exchange strategies for the propagation of MVA-CR19 or influenza A/PR/8/34 viruses in 50 mL cultivations; 2) scale-up and process optimization of the selected high-yield process strategy to a 1 L bioreactor with the ATF system, and 3) integration of a one-step purification process using magnetic sulfated cellulose particles (MSCP). For both viruses, conventional batch cultivation (no addition/medium exchange after infection) was compared with processes applying fed-batch, periodic medium exchange and the combination of both during virus propagation. Results. Perfusion and semi-perfusion at a feeding rate of 0.05 nL/cell×d was suitable to propagate AGE1.CR.pIX cells above 60×106 cells/mL with neither limitation nor overload of nutrients. For infections at 50 mL scale, the application of a combined strategy comprising an initial fed-batch phase followed by a periodic virus harvest phase resulted in the highest product yield with a more than 10-fold increase in virus particles concentration compared to the conventional batch processes operated at 4 to 8×106 cells/mL [2]. Additionally, a 3-fold increase in both cell-specific yield (virus particles/cell) and volumetric productivity (virus particles/L×d) could be obtained. Comparable yields were observed when up-scaling to a 1 L bioreactor using an ATF-system, even when virus particles were retained within the bioreactor. Further selection of the optimal pore size of the ATF membrane allowed semi-continuous harvesting of the produced viruses and its purification with MSCPs with a recovery from 30 to 50%. In all cases, cell-specific yields and volumetric productivities reached their maxima at 72 h post-infection, indicating that the process should be stopped at that time point. Conclusion. Compared to conventional batch processes, the developed HCD process offers significantly higher productivities including the option to integrate a one-step purification process in a semi-continuous mode. Overall, the results show that there is a great potential for semi-continuous HCD processes for the production of viral vaccines in larger scales, which could support efforts towards the establishment of continuous vaccine manufacturing. References. 1. Pohlscheidt, M., et al., Development and optimisation of a procedure for the production of Parapoxvirus ovis by large-scale microcarrier cell culture in a non-animal, non-human and non-plant-derived medium. Vaccine, 2008. 26(12): p. 1552-65. 2. Lohr, V., et al., New avian suspension cell lines provide production of influenza virus and MVA in serum-free media: studies on growth, metabolism and virus propagation. Vaccine, 2009. 27(36): p. 4975-82

    Process optimization for semi-continuous virus production at high cell densities

    Get PDF
    Background. Unlike production of recombinant proteins, continuous production of viral vaccines at high cell densities (HCD) is still constrained by host cell lysis during virus propagation and limited virus recovery from culture broth. Nevertheless, advanced fed-batch [1] and perfusion strategies can be applied to achieve a high-yield virus production processes. In this study, the development of a high-yield semi-continuous process for the production and purification of the modified vaccinia Ankara virus isolate MVA-CR19 and influenza A/PR/8 in HCD cultivations of the suspension cell line AGE1.CR.pIX (ProBioGen AG, Berlin) is presented. Methods. Depending on the required scale, high cell concentrations (~ 50×106 cell mL-1) were achieved either through medium renewal by periodic centrifugation (semi-perfusion) in 50 mL cultivations or using an alternating tangential flow (ATF) perfusion system for 1 L bioreactors. Process development and optimization comprised three phases: 1) assessment of different fed-batch and medium exchange strategies for the propagation of MVA-CR19 or influenza A/PR/8 viruses in 50 mL cultivations; 2) scale-up and process optimization of the high-yield process strategy to a 1 L bioreactor with the ATF system, and 3) integration of a purification process step using magnetic sulfated cellulose particles (MSCP). For both viruses, conventional batch cultivation (no addition/medium exchange after infection) was compared with processes applying fed-batch, periodic medium exchange and the combination of both during virus propagation. Results. Perfusion and semi-perfusion at a feeding rate of 0.05 nL/cell×d was suitable to propagate AGE1.CR.pIX cells above 60×106 cells/mL with neither limitation nor overload of nutrients. For infections in 50 mL, the application of a combined strategy comprising an initial fed-batch phase followed by a periodic virus harvest phase resulted in the highest product yield with a more than 10-fold increase, compared to the conventional batch processes at 4 to 8×106 cell/mL [2]. Additionally, a 3-fold increase in both cell-specific yield (virus/cell) and volumetric productivity (virus/L×d) could be obtained. Although product harvesting was suboptimal when up-scaling to a 1 L bioreactor with ATF-system, comparable increases in virus yields and productivity with respect to the conventional batch process were observed. In all cases, cell-specific yields and volumetric productivities reached their peak values at the peak virus concentrations, indicating that the process should be stopped at that time point. Eventually, selection of the optimal pore size of the membrane of the ATF-system allowed semi-continuous harvesting of the produced viruses and its purification with MSCPs with a recovery of about 50%. Conclusion. Compared to conventional batch processes, the developed HCD process offers significantly higher productivities including the option to integrate a purification step in a semi-continuous mode. Overall, the results show that there is a great potential for semi-continuous HCD processes for the production of viral vaccines in larger scales, which could intensify the discussion towards the establishment of true continuous production process

    Correlation dynamics between electrons and ions in the fragmentation of D2_2 molecules by short laser pulses

    Full text link
    We studied the recollision dynamics between the electrons and D2+_2^+ ions following the tunneling ionization of D2_2 molecules in an intense short pulse laser field. The returning electron collisionally excites the D2+_2^+ ion to excited electronic states from there D2+_2^+ can dissociate or be further ionized by the laser field, resulting in D+^+ + D or D+^+ + D+^+, respectively. We modeled the fragmentation dynamics and calculated the resulting kinetic energy spectrum of D+^+ to compare with recent experiments. Since the recollision time is locked to the tunneling ionization time which occurs only within fraction of an optical cycle, the peaks in the D+^+ kinetic energy spectra provides a measure of the time when the recollision occurs. This collision dynamics forms the basis of the molecular clock where the clock can be read with attosecond precision, as first proposed by Corkum and coworkers. By analyzing each of the elementary processes leading to the fragmentation quantitatively, we identified how the molecular clock is to be read from the measured kinetic energy spectra of D+^+ and what laser parameters be used in order to measure the clock more accurately.Comment: 13 pages with 14 figure

    Connexin 43 mediated gap junctional communication enhances breast tumor cell diapedesis in culture

    Get PDF
    INTRODUCTION: Metastasis involves the emigration of tumor cells through the vascular endothelium, a process also known as diapedesis. The molecular mechanisms regulating tumor cell diapedesis are poorly understood, but may involve heterocellular gap junctional intercellular communication (GJIC) between tumor cells and endothelial cells. METHOD: To test this hypothesis we expressed connexin 43 (Cx43) in GJIC-deficient mammary epithelial tumor cells (HBL100) and examined their ability to form gap junctions, establish heterocellular GJIC and migrate through monolayers of human microvascular endothelial cells (HMVEC) grown on matrigel-coated coverslips. RESULTS: HBL100 cells expressing Cx43 formed functional heterocellular gap junctions with HMVEC monolayers within 30 minutes. In addition, immunocytochemistry revealed Cx43 localized to contact sites between Cx43 expressing tumor cells and endothelial cells. Quantitative analysis of diapedesis revealed a two-fold increase in diapedesis of Cx43 expressing cells compared to empty vector control cells. The expression of a functionally inactive Cx43 chimeric protein in HBL100 cells failed to increase migration efficiency, suggesting that the observed up-regulation of diapedesis in Cx43 expressing cells required heterocellular GJIC. This finding is further supported by the observation that blocking homocellular and heterocellular GJIC with carbenoxolone in co-cultures also reduced diapedesis of Cx43 expressing HBL100 tumor cells. CONCLUSION: Collectively, our results suggest that heterocellular GJIC between breast tumor cells and endothelial cells may be an important regulatory step during metastasis

    Invasive characteristics of human prostatic epithelial cells: understanding the metastatic process

    Get PDF
    Prostate cancer has a predilection to metastasise to the bone marrow stroma (BMS) by an as yet uncharacterised mechanism. We have defined a series of coculture models of invasion, which simulate the blood/BMS boundary and allow the elucidation of the signalling and mechanics of trans-endothelial migration within the complex bone marrow environment. Confocal microscopy shows that prostate epithelial cells bind specifically to bone marrow endothelial-to-endothelial cell junctions and initiate endothelial cell retraction. Trans-endothelial migration proceeds via an epithelial cell pseudopodial process, with complete epithelial migration occurring after 232±43 min. Stromal-derived factor-1 (SDF-1)/CXCR4 signalling induced PC-3 to invade across a basement membrane although the level of invasion was 3.5-fold less than invasion towards BMS (P=0.0007) or bone marrow endothelial cells (P=0.004). Maximal SDF-1 signalling of invasion was completely inhibited by 10 μM of the SDF-1 inhibitor T140. However, 10 μM T140 only reduced invasion towards BMS and bone marrow endothelial cells by 59% (P=0.001) and 29% (P=0.011), respectively. This study highlights the need to examine the potential roles of signalling molecules and/or inhibitors, not just in single-cell models but in coculture models that mimic the complex environment of the bone marrow

    Comparison of Recombinant Human Haptocorrin Expressed in Human Embryonic Kidney Cells and Native Haptocorrin

    Get PDF
    Haptocorrin (HC) is a circulating corrinoid binding protein with unclear function. In contrast to transcobalamin, the other transport protein in blood, HC is heavily glycosylated and binds a variety of cobalamin (Cbl) analogues. HC is present not only in blood but also in various secretions like milk, tears and saliva. No recombinant form of HC has been described so far. We report the expression of recombinant human HC (rhHC) in human embryonic kidney cells. We purified the protein with a yield of 6 mg (90 nmol) per litre of cell culture supernatant. The isolated rhHC behaved as native HC concerning its spectral properties and ability to recognize both Cbl and its baseless analogue cobinamide. Similar to native HC isolated from blood, rhHC bound to the asialoglycoprotein receptor only after removal of terminal sialic acid residues by treatment with neuraminidase. Interestingly, rhHC, that compared to native HC contains four excessive amino acids (…LVPR) at the C-terminus, showed subtle changes in the binding kinetics of Cbl, cobinamide and the fluorescent Cbl conjugate CBC. The recombinant protein has properties very similar to native HC and although showing slightly different ligand binding kinetics, rhHC is valuable for further biochemical and structural studies

    ALCAM Regulates Motility, Invasiveness, and Adherens Junction Formation in Uveal Melanoma Cells

    Get PDF
    ALCAM, a member of the immunoglobulin superfamily, has been implicated in numerous developmental events and has been repeatedly identified as a marker for cancer metastasis. Previous studies addressing ALCAM’s role in cancer have, however, yielded conflicting results. Depending on the tumor cell type, ALCAM expression has been reported to be both positively and negatively correlated with cancer progression and metastasis in the literature. To better understand how ALCAM might regulate cancer cell behavior, we utilized a panel of defined uveal melanoma cell lines with high or low ALCAM levels, and directly tested the effects of manipulating these levels on cell motility, invasiveness, and adhesion using multiple assays. ALCAM expression was stably silenced by shRNA knockdown in a high-ALCAM cell line (MUM-2B); the resulting cells displayed reduced motility in gap-closure assays and a reduction in invasiveness as measured by a transwell migration assay. Immunostaining revealed that the silenced cells were defective in the formation of adherens junctions, at which ALCAM colocalizes with N-cadherin and ß-catenin in native cells. Additionally, we stably overexpressed ALCAM in a low-ALCAM cell line (MUM-2C); intriguingly, these cells did not exhibit any increase in motility or invasiveness, indicating that ALCAM is necessary but not sufficient to promote metastasis-associated cell behaviors. In these ALCAM-overexpressing cells, however, recruitment of ß-catenin and N-cadherin to adherens junctions was enhanced. These data confirm a previously suggested role for ALCAM in the regulation of adherens junctions, and also suggest a mechanism by which ALCAM might differentially enhance or decrease invasiveness, depending on the type of cadherin adhesion complexes present in tissues surrounding the primary tumor, and on the cadherin status of the tumor cells themselves
    • …
    corecore