1,428 research outputs found

    Odor-driven attractor dynamics in the antennal lobe allow for simple and rapid olfactory pattern classification

    Get PDF
    The antennal lobe plays a central role for odor processing in insects, as demonstrated by electrophysiological and imaging experiments. Here we analyze the detailed temporal evolution of glomerular activity patterns in the antennal lobe of honeybees. We represent these spatiotemporal patterns as trajectories in a multidimensional space, where each dimension accounts for the activity of one glomerulus. Our data show that the trajectories reach odor-specific steady states (attractors) that correspond to stable activity patterns at about 1 second after stimulus onset. As revealed by a detailed mathematical investigation, the trajectories are characterized by different phases: response onset, steady-state plateau, response offset, and periods of spontaneous activity. An analysis based on support-vector machines quantifies the odor specificity of the attractors and the optimal time needed for odor discrimination. The results support the hypothesis of a spatial olfactory code in the antennal lobe and suggest a perceptron-like readout mechanism that is biologically implemented in a downstream network, such as the mushroom body

    Distribution of hydrogen peroxide and methylhydroperoxide over the Pacific and South Atlantic Oceans

    Get PDF
    The gas phase hydrogen peroxide and methylhydroperoxide concentrations were measured in the troposphere over the tropical Pacific Ocean as a component of NASA's Global Tropospheric Experiment/Pacific Exploratory Mission-Tropics A field campaign. Flights on two aircraft covered the Pacific from 70°S to 60°N and 110°E to 80°W and South Atlantic from 40°S to 15°N and 45°W to 70°E, and extending from 76 to 13,000 m altitude. H2O2 and CH3OOH have the highest concentrations at a given altitude at the equator and decrease with increasing latitude in both the northern and southern hemispheres. Above 4 km the gradient is substantially reduced for both H2O2 and CH3OOH with latitude, and at altitudes in excess of 8 km there is no latitudinal dependence. H2O2 and CH3OOH exhibit maximum mixing ratios between 1 and 2 km at all latitudes. The mean mixing ratio of H2O2 at the equator was 1600 ± 600 parts per trillion by volume (pptv) decreasing to 500 ± 250 pptv at latitudes greater than 55° north and south between 1 and 2 km altitude. CH3OOH at the equator was 1400 ± 250 pptv, decreasing to 330 ± 200 pptv at high latitudes at altitudes between 1 and 2 km. The concentration of peroxides at high latitudes in the northern hemisphere was generally a factor of 2 higher than at corresponding latitudes in the southern hemisphere. The ratio of H2O2 to CH3OOH was between 1 and 2 from 45°S to 35°N at altitudes below 4 km. Between 5° to 15°N the ratio is less than 1, due to preferential removal of H2O2 in the Intertropical Convergence Zone. Copyright 1999 by the American Geophysical Union

    The banana code—natural blend processing in the olfactory circuitry of Drosophila melanogaster

    Get PDF
    Odor information is predominantly perceived as complex odor blends. For Drosophila melanogaster one of the most attractive blends is emitted by an over-ripe banana. To analyze how the fly's olfactory system processes natural blends we combined the experimental advantages of gas chromatography and functional imaging (GC-I). In this way, natural banana compounds were presented successively to the fly antenna in close to natural occurring concentrations. This technique allowed us to identify the active odor components, use these compounds as stimuli and measure odor-induced Ca(2+) signals in input and output neurons of the Drosophila antennal lobe (AL), the first olfactory neuropil. We demonstrate that mixture interactions of a natural blend are very rare and occur only at the AL output level resulting in a surprisingly linear blend representation. However, the information regarding single components is strongly modulated by the olfactory circuitry within the AL leading to a higher similarity between the representation of individual components and the banana blend. This observed modulation might tune the olfactory system in a way to distinctively categorize odor components and improve the detection of suitable food sources. Functional GC-I thus enables analysis of virtually any unknown natural odorant blend and its components in their relative occurring concentrations and allows characterization of neuronal responses of complete neural assemblies. This technique can be seen as a valuable complementary method to classical GC/electrophysiology techniques, and will be a highly useful tool in future investigations of insect-insect and insect-plant chemical interactions

    Puckering Free Energy of Pyranoses: an NMR and Metadynamics--Umbrella Sampling Investigation

    Full text link
    We present the results of a combined metadynamics--umbrella sampling investigation of the puckered conformers of pyranoses described using the gromos 45a4 force field. The free energy landscape of Cremer--Pople puckering coordinates has been calculated for the whole series of alpha and beta aldohexoses, showing that the current force field parameters fail in reproducing proper puckering free energy differences between chair conformers. We suggest a modification to the gromos 45a4 parameter set which improves considerably the agreement of simulation results with theoretical and experimental estimates of puckering free energies. We also report on the experimental measurement of altrose conformers populations by means of NMR spectroscopy, which show good agreement with the predictions of current theoretical models

    Modeling effects of L-type ca(2+) current and na(+)-ca(2+) exchanger on ca(2+) trigger flux in rabbit myocytes with realistic T-tubule geometries.

    Get PDF
    The transverse tubular system of rabbit ventricular myocytes consists of cell membrane invaginations (t-tubules) that are essential for efficient cardiac excitation-contraction coupling. In this study, we investigate how t-tubule micro-anatomy, L-type Ca(2+) channel (LCC) clustering, and allosteric activation of Na(+)/Ca(2+) exchanger by L-type Ca(2+) current affects intracellular Ca(2+) dynamics. Our model includes a realistic 3D geometry of a single t-tubule and its surrounding half-sarcomeres for rabbit ventricular myocytes. The effects of spatially distributed membrane ion-transporters (LCC, Na(+)/Ca(2+) exchanger, sarcolemmal Ca(2+) pump, and sarcolemmal Ca(2+) leak), and stationary and mobile Ca(2+) buffers (troponin C, ATP, calmodulin, and Fluo-3) are also considered. We used a coupled reaction-diffusion system to describe the spatio-temporal concentration profiles of free and buffered intracellular Ca(2+). We obtained parameters from voltage-clamp protocols of L-type Ca(2+) current and line-scan recordings of Ca(2+) concentration profiles in rabbit cells, in which the sarcoplasmic reticulum is disabled. Our model results agree with experimental measurements of global Ca(2+) transient in myocytes loaded with 50 μM Fluo-3. We found that local Ca(2+) concentrations within the cytosol and sub-sarcolemma, as well as the local trigger fluxes of Ca(2+) crossing the cell membrane, are sensitive to details of t-tubule micro-structure and membrane Ca(2+) flux distribution. The model additionally predicts that local Ca(2+) trigger fluxes are at least threefold to eightfold higher than the whole-cell Ca(2+) trigger flux. We found also that the activation of allosteric Ca(2+)-binding sites on the Na(+)/Ca(2+) exchanger could provide a mechanism for regulating global and local Ca(2+) trigger fluxes in vivo. Our studies indicate that improved structural and functional models could improve our understanding of the contributions of L-type and Na(+)/Ca(2+) exchanger fluxes to intracellular Ca(2+) dynamics

    Long-Term Recurrence of Nonmelanoma Skin Cancer after Topical Methylaminolevulinate Photodynamic Therapy in a Dermato-Oncology Department

    Get PDF
    BACKGROUND: Most available studies on the efficacy of topical photodynamic therapy focus on short-to medium-term results. Long-term data are scarce. OBJECTIVE: To evaluate the long-term efficacy of photodynamic therapy with topical methylaminolevulinate to treat Bowen's disease and basal cell carcinoma in the clinical practice setting of a dermato-oncology department. METHODS: The study included patients diagnosed with Bowen's disease or basal cell carcinoma, and who received photodynamic therapy from 2004 to 2008. Treatment protocol and clinical follow-up were standardized. The primary endpoint was clinically observed recurrence in a previous photodynamic therapy-treated area. Descriptive and survival analyses were performed. RESULTS: A total of 31 Bowen's disease lesions and 44 superficial basal cell carcinoma were treated, with a median follow-up of 43.5 months. Recurrence was observed in 14 Bowen's disease lesions (53.8%) and in 11 superficial basal cell carcinoma (33.3%). Significantly higher estimates for recurrence rates were found in patients with Bowen's disease (p=0.0036) or those aged under 58 years (p=0.039). The risk of recurrence was higher in patients with Bowen's disease than in those with superficial basal cell carcinoma and younger patients. CONCLUSIONS: Recurrence should be considered when choosing to treat non-melanoma skin cancer with photodynamic therapy. Younger age and Bowen's disease were independent predictors for long-term recurrence, suggesting the need to establish an extended period of follow-up for this subset of patients

    Влияние концентрации модификатора на структурные и функциональные свойства модифицированных нановолокон оксигидроксида алюминия

    Get PDF
    It was shown that the concentration of the modifier (manganese ions (II)) significantly affects the structural properties of the modified aluminum oxyhydroxide. In the phase composition of the samples modified and reduced content hydroxid and oxyhydroxide aluminum phases, which leads to a drop of the specific surface area from 196,16 to 10,78 m2/g. In the modified heating samples in air joint formed of aluminum oxide and manganese phase - MnAl2O4, and in the sample with the highest content of manganese oxides, manganese own found - Mn3O4, Mn2O3. The presence of manganese oxide phases making a modified aluminum oxyhydroxide promising as a catalyst for the oxidation of organic and inorganic compounds

    Improved quantification of Chinese carbon fluxes using CO2/CO correlations in Asian outflow

    Get PDF
    [1] We use observed CO2:CO correlations in Asian outflow from the TRACE-P aircraft campaign (February–April 2001), together with a three-dimensional global chemical transport model (GEOS-CHEM), to constrain specific components of the east Asian CO2 budget including, in particular, Chinese emissions. The CO2/CO emission ratio varies with the source of CO2 (different combustion types versus the terrestrial biosphere) and provides a characteristic signature of source regions and source type. Observed CO2/CO correlation slopes in east Asian boundary layer outflow display distinct regional signatures ranging from 10–20 mol/mol (outflow from northeast China) to 80 mol/mol (over Japan). Model simulations using best a priori estimates of regional CO2 and CO sources from Streets et al. [2003] (anthropogenic), the CASA model (biospheric), and Duncan et al. [2003] (biomass burning) overestimate CO2 concentrations and CO2/CO slopes in the boundary layer outflow. Constraints from the CO2/CO slopes indicate that this must arise from an overestimate of the modeled regional net biospheric CO2 flux. Our corrected best estimate of the net biospheric source of CO2 from China for March–April 2001 is 3200 Gg C/d, which represents a 45 % reduction of the net flux from the CASA model. Previous analyses of the TRACE-P data had found that anthropogenic Chinese C

    Efficient assembly and secretion of recombinant subviral particles of the four dengue serotypes using native prM and E proteins.

    Get PDF
    © 2009 Wang et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Background: Flavivirus infected cells produce infectious virions and subviral particles, both of which are formed by the assembly of prM and E envelope proteins and are believed to undergo the same maturation process. Dengue recombinant subviral particles have been produced in cell cultures with either modified or chimeric proteins but not using the native forms of prM and E. Methodology/Principal Findings: We have used a codon optimization strategy to obtain an efficient expression of native viral proteins and production of recombinant subviral particles (RSPs) for all four dengue virus (DV) serotypes. A stable HeLa cell line expressing DV1 prME was established (HeLa-prME) and RSPs were analyzed by immunofluorescence and transmission electron microscopy. We found that E protein is mainly present in the endoplasmic reticulum (ER) where assembly of RSPs could be observed. Biochemical characterization of DV1 RSPs secretion revealed both prM protein cleavage and homodimerization of E proteins before their release into the supernatant, indicating that RSPs undergo a similar maturation process as dengue virus. Pulse chase experiment showed that 8 hours are required for the secretion of DV1 RSPs. We have used HeLa-prME to develop a semi-quantitative assay and screened a human siRNA library targeting genes involved in membrane trafficking. Knockdown of 23 genes resulted in a significant reduction in DV RSP secretion, whereas for 22 others we observed an increase of RSP levels in cell supernatant. Conclusions/Significance: Our data describe the efficient production of RSPs containing native prM and E envelope proteins for all dengue serotypes. Dengue RSPs and corresponding producing cell lines are safe and novel tools that can be used in the study of viral egress as well as in the development of vaccine and drugs against dengue virus.This work was supported by the 6th European Framework programme DENFRAME and by the Research Fund for the Control of Infectious Diseases of Hong Kong (RFCID#08070952)
    corecore