139 research outputs found

    Entanglement Switch for Dipole Arrays

    Get PDF
    We propose a new entanglement switch of qubits consisting of electric dipoles, oriented along or against an external electric field and coupled by the electric dipole-dipole interaction. The pairwise entanglement can be tuned and controlled by the ratio of the Rabi frequency and the dipole-dipole coupling strength. Tuning the entanglement can be achieved for one, two and three-dimensional arrangements of the qubits. The feasibility of building such an entanglement switch is also discussed.Comment: 6 pages and 4 figures. To be published on Journal of Chemical Physic

    Scaling of entanglement at quantum phase transition for two-dimensional array of quantum dots

    Full text link
    With Hubbard model, the entanglement scaling behavior in a two-dimensional itinerant system is investigated. It has been found that, on the two sides of the critical point denoting an inherent quantum phase transition (QPT), the entanglement follows different scalings with the size just as an order parameter does. This fact reveals the subtle role played by the entanglement in QPT as a fungible physical resource

    Simulated Quantum Computation of Global Minima

    Get PDF
    Finding the optimal solution to a complex optimization problem is of great importance in practically all fields of science, technology, technical design and econometrics. We demonstrate that a modified Grover's quantum algorithm can be applied to real problems of finding a global minimum using modest numbers of quantum bits. Calculations of the global minimum of simple test functions and Lennard-Jones clusters have been carried out on a quantum computer simulator using a modified Grover's algorithm. The number of function evaluations NN reduced from O(N) in classical simulation to O(N)O(\sqrt{N}) in quantum simulation. We also show how the Grover's quantum algorithm can be combined with the classical Pivot method for global optimization to treat larger systems.Comment: 6 figures. Molecular Physics, in pres

    Universal Programmable Quantum Circuit Schemes to Emulate an Operator

    Get PDF
    Unlike fixed designs, programmable circuit designs support an infinite number of operators. The functionality of a programmable circuit can be altered by simply changing the angle values of the rotation gates in the circuit. Here, we present a new quantum circuit design technique resulting in two general programmable circuit schemes. The circuit schemes can be used to simulate any given operator by setting the angle values in the circuit. This provides a fixed circuit design whose angles are determined from the elements of the given matrix-which can be non-unitary-in an efficient way. We also give both the classical and quantum complexity analysis for these circuits and show that the circuits require a few classical computations. They have almost the same quantum complexities as non-general circuits. Since the presented circuit designs are independent from the matrix decomposition techniques and the global optimization processes used to find quantum circuits for a given operator, high accuracy simulations can be done for the unitary propagators of molecular Hamiltonians on quantum computers. As an example, we show how to build the circuit design for the hydrogen molecule.Comment: combined with former arXiv:1207.174

    Dynamics of entanglement in a two-dimensional spin system

    Get PDF
    We consider the time evolution of entanglement in a finite two dimensional transverse Ising model. The model consists of a set of 7 localized spin-1/2 particles in a two dimensional triangular lattice coupled through nearest neighbor exchange interaction in presence of an external time dependent magnetic field. The magnetic field is applied in different function forms: step, exponential, hyperbolic and periodic. We found that the time evolution of the entanglement shows an ergodic behavior under the effect of the time dependent magnetic fields. Also we found that while the step magnetic field causes great disturbance to the system creating rabid oscillations, the system shows great controllability under the effect of the other magnetic fields where the entanglement profile follows closely the shape of the applied field even with the same frequency for periodic fields. This follow up trend breaks down as the strength of the field, the transition constant for exponential and hyperbolic, or frequency for periodic field increase leading to rapid oscillations. We observed that the entanglement is very sensitive to the initial value of the applied periodic field, the smaller the initial value the less distorted is the entanglement profile. Furthermore, the effect of thermal fluctuations is very devastating to the entanglement which decays very rapidly as the temperature increases. Interestingly, although large value of the magnetic field strength may yield small entanglement, it was found to be more persistent against thermal fluctuations than the small field strengths

    Finite size scaling for quantum criticality using the finite-element method

    Full text link
    Finite size scaling for the Schr\"{o}dinger equation is a systematic approach to calculate the quantum critical parameters for a given Hamiltonian. This approach has been shown to give very accurate results for critical parameters by using a systematic expansion with global basis-type functions. Recently, the finite element method was shown to be a powerful numerical method for ab initio electronic structure calculations with a variable real-space resolution. In this work, we demonstrate how to obtain quantum critical parameters by combining the finite element method (FEM) with finite size scaling (FSS) using different ab initio approximations and exact formulations. The critical parameters could be atomic nuclear charges, internuclear distances, electron density, disorder, lattice structure, and external fields for stability of atomic, molecular systems and quantum phase transitions of extended systems. To illustrate the effectiveness of this approach we provide detailed calculations of applying FEM to approximate solutions for the two-electron atom with varying nuclear charge; these include Hartree-Fock, density functional theory under the local density approximation, and an "exact"' formulation using FEM. We then use the FSS approach to determine its critical nuclear charge for stability; here, the size of the system is related to the number of elements used in the calculations. Results prove to be in good agreement with previous Slater-basis set calculations and demonstrate that it is possible to combine finite size scaling with the finite-element method by using ab initio calculations to obtain quantum critical parameters. The combined approach provides a promising first-principles approach to describe quantum phase transitions for materials and extended systems.Comment: 15 pages, 19 figures, revision based on suggestions by referee, accepted in Phys. Rev.

    Quantum algorithm and circuit design solving the Poisson equation

    Get PDF
    The Poisson equation occurs in many areas of science and engineering. Here we focus on its numerical solution for an equation in d dimensions. In particular we present a quantum algorithm and a scalable quantum circuit design which approximates the solution of the Poisson equation on a grid with error \varepsilon. We assume we are given a supersposition of function evaluations of the right hand side of the Poisson equation. The algorithm produces a quantum state encoding the solution. The number of quantum operations and the number of qubits used by the circuit is almost linear in d and polylog in \varepsilon^{-1}. We present quantum circuit modules together with performance guarantees which can be also used for other problems.Comment: 30 pages, 9 figures. This is the revised version for publication in New Journal of Physic

    Synthesis and Characterization of Some Novel Oxazine, Thiazine and Pyrazol Derivatives

    Get PDF
    In this paper, some chalcone derivatives (C1, C2) were synthesized based on the reaction of equal amount of substituted acetophenone and substituted banzaldehyde in basic medium. Oxazine and thiazine derivatives were prepared from the reaction of chalcones (C1-C2) with urea and thiourea respectively in a basic medium. Pyrazole derivatives were prepared based on the reaction of chalcones with hydrazine mono hydrate or phenyl hydrazine in the presence of glacial acetic acid as a catalyst. The new synthesized compounds were identified using various physical techniques like1 H-NMR and FT-IR spectra

    Epidemiology of traumatic spinal cord injury in Galicia, Spain: trends over a 20-year period

    Get PDF
    [Abstract] Study design: Observational study with prospective and retrospective monitoring. Objective: To describe the epidemiological and demographic characteristics of traumatic spinal cord injury (TSCI), and to analyze its epidemiological changes. Setting: Unidad de Lesionados Medulares, Complejo Hospitalario Universitario A Coruña, in Galicia (Spain). Methods: The study included patients with TSCI who had been hospitalized between January 1995 and December 2014. Relevant data were extracted from the admissions registry and electronic health record. Results: A total of 1195 patients with TSCI were admitted over the specified period of time; 76.4% male and 23.6% female. Mean patient age at injury was 50.20 years. Causes of injury were falls (54.2%), traffic accidents (37%), sports/leisure-related accidents (3.5%) and other traumatic causes (5.3%). Mean patient age increased significantly over time (from 46.40 to 56.54 years), and the number of cases of TSCI related to traffic accidents decreased (from 44.5% to 23.7%), whereas those linked to falls increased (from 46.9% to 65.6%). The most commonly affected neurological level was the cervical level (54.9%), increasing in the case of levels C1–C4 over time, and the most frequent ASIA (American Spinal Injury Association) grade was A (44.3%). The crude annual incidence rate was 2.17/100 000 inhabitants, decreasing significantly over time at an annual percentage rate change of −1.4%. Conclusions: The incidence rate of TSCI tends to decline progressively. Mean patient age has increased over time and cervical levels C1–C4 are currently the most commonly affected ones. These epidemiological changes will eventually result in adjustments in the standard model of care for TSCI
    corecore