
Purdue University
Purdue e-Pubs

Birck and NCN Publications Birck Nanotechnology Center

12-21-2012

Universal programmable quantum circuit schemes
to emulate an operator
Anmer Daskin
Purdue University, adaskin@purdue.edu

Ananth Grama
Purdue University, ayg@purdue.edu

Giorgos Kollias
Purdue University

Sabre Kais
Birck Nanotechnology Center, Purdue University, kais@purdue.edu

Follow this and additional works at: http://docs.lib.purdue.edu/nanopub

Part of the Nanoscience and Nanotechnology Commons

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for
additional information.

Daskin, Anmer; Grama, Ananth; Kollias, Giorgos; and Kais, Sabre, "Universal programmable quantum circuit schemes to emulate an
operator" (2012). Birck and NCN Publications. Paper 1085.
http://dx.doi.org/10.1063/1.4772185

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/16677067?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://docs.lib.purdue.edu?utm_source=docs.lib.purdue.edu%2Fnanopub%2F1085&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/nanopub?utm_source=docs.lib.purdue.edu%2Fnanopub%2F1085&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/nano?utm_source=docs.lib.purdue.edu%2Fnanopub%2F1085&utm_medium=PDF&utm_campaign=PDFCoverPages
http://docs.lib.purdue.edu/nanopub?utm_source=docs.lib.purdue.edu%2Fnanopub%2F1085&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/313?utm_source=docs.lib.purdue.edu%2Fnanopub%2F1085&utm_medium=PDF&utm_campaign=PDFCoverPages


Downloaded 23 Aug 2013 to 128.46.221.64. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://jcp.aip.org/about/rights_and_permissions



THE JOURNAL OF CHEMICAL PHYSICS 137, 234112 (2012)

Universal programmable quantum circuit schemes to emulate an operator
Anmer Daskin,1 Ananth Grama,1 Giorgos Kollias,1 and Sabre Kais2,3,a)

1Department of Computer Science, Purdue University, West Lafayette, Indiana 47907, USA
2Department of Chemistry, Department of Physics and Birck Nanotechnology Center, Purdue University,
West Lafayette, Indiana 47907, USA
3Qatar Environment and Energy Research Institute, Doha, Qatar

(Received 13 August 2012; accepted 30 November 2012; published online 21 December 2012)

Unlike fixed designs, programmable circuit designs support an infinite number of operators. The
functionality of a programmable circuit can be altered by simply changing the angle values of the
rotation gates in the circuit. Here, we present a new quantum circuit design technique resulting in
two general programmable circuit schemes. The circuit schemes can be used to simulate any given
operator by setting the angle values in the circuit. This provides a fixed circuit design whose an-
gles are determined from the elements of the given matrix–which can be non-unitary–in an efficient
way. We also give both the classical and quantum complexity analysis for these circuits and show
that the circuits require a few classical computations. For the electronic structure simulation on a
quantum computer, one has to perform the following steps: prepare the initial wave function of the
system; present the evolution operator U = e−iHt for a given atomic and molecular Hamiltonian H
in terms of quantum gates array and apply the phase estimation algorithm to find the energy eigen-
values. Thus, in the circuit model of quantum computing for quantum chemistry, a crucial step is
presenting the evolution operator for the atomic and molecular Hamiltonians in terms of quantum
gate arrays. Since the presented circuit designs are independent from the matrix decomposition tech-
niques and the global optimization processes used to find quantum circuits for a given operator, high
accuracy simulations can be done for the unitary propagators of molecular Hamiltonians on quan-
tum computers. As an example, we show how to build the circuit design for the hydrogen molecule.
© 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4772185]

I. INTRODUCTION

The classical logical devices can be broadly categorized
as fixed and programmable devices. As we understand from
their names, the circuits in a fixed logic can only support one
function which is determined at the time of manufacture. This
cannot be changed at a later day. On the other hand, pro-
grammable devices such as programmable logic devices and
field-programmable gate arrays are able to support an infi-
nite number of functionalities since they can be reconfigured
outside of the manufacturing environment. With this feature
designers and programmers can run and simulate their test
designs and algorithms.1

Quantum computing has become a huge new interdis-
ciplinary area by providing different approaches and pro-
tocols to various subfields including: communication, en-
cryption, global binary optimization (see adiabatic quantum
computing2), linear algebra, and so on;3–5 however, pro-
grammable quantum circuits and chip designs like those in
classical computers have remained an open issue.

In the circuit model of quantum computing, unitary ma-
trix operators represent the algorithms or some part of the
computations.6 Hence, one of the fundamental issues is to
have a general purpose quantum circuit or a quantum chip
that can realize different types of algorithms in a fast and

a)Author to whom correspondence should be addressed. Electronic mail:
kais@purdue.edu.

an efficient way. The possibility of designing universal quan-
tum gate arrays as a general purpose quantum computer has
been discussed in Ref. 7. It is shown that a gate array can
be programmed to evaluate the expectation value of a given
operator.8 For the realization of a quantum gate, a cell struc-
tured quantum circuit design based on the activation and the
deactivation of the gates on different qubits is proposed: It
is shown that a combination of such cells can be used to re-
alize a given quantum gate sequence.9 Moreover, different
schemes of general programmable universal quantum circuits
are shown for two10,11 and three qubits12–14 found by apply-
ing different decomposition schemes to a given unitary opera-
tor. Based on the general two-qubit circuit design, a two-qubit
quantum processor is experimentally realized.15 However, the
realization of a general quantum processor and a full-scale
quantum computer is still an obstacle which requires new the-
oretical and experimental improvements.16

It is known that the realization of quantum logical op-
erations can be simplified by using the higher dimensional
Hilbert spaces.16,17 In this paper, using ancilla qubits, we
describe a new circuit design approach which produces two
programmable quantum circuit designs. These can be fur-
ther improved to design general large-scale quantum chips
and programmable quantum gate arrays. The circuits also
support simulation of non-unitary matrices. We also show
the complexity analysis for the circuits: in terms of quan-
tum complexity, they have about the same complexity as
non-programmable designs which are generated by using

0021-9606/2012/137(23)/234112/12/$30.00 © 2012 American Institute of Physics137, 234112-1
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matrix decompositions in numerical linear algebra such as
QR decomposition,18 the quantum Shannon decomposition,
the cosine-sine decomposition and some others19,20 (see
Ref. 20 for the comparison and the complexities of these
methods). In terms of classical complexity, since angles for
our programmable circuits can be determined simply individ-
ual matrix elements, the classical complexity is much simpler
than the decomposition methods.

This paper is organized as follows: After giving the gen-
eral simulation idea, the details of two circuit designs imple-
menting this idea are presented. Then the complexity of the
circuits are analyzed in terms of classical and quantum com-
plexities. Finally, we discuss the circuit designs and possible
future directions. In Appendix A, more computational details
related to matrices are presented.

II. THE GENERAL SIMULATION IDEA

For a given real unitary UN×N with N = 2n, and n is
the number of qubits, the relationship between the input |ψ〉
= α1|0. . . 0〉 + · · · + αN|1. . . 1〉 and the output |ϕ〉 is defined
as |ϕ〉 = U|ψ〉 generating N states

U |ψ〉 =

⎛
⎜⎝

u11 . . . u1N

...
...

uN1 . . . uNN

⎞
⎟⎠

⎛
⎜⎝

α1
...

αN

⎞
⎟⎠ =

⎛
⎜⎝

β1
...

βN

⎞
⎟⎠ . (1)

Any system of higher dimension (ancilla qubits are added to
the original system) can also be used to generate this output on
N chosen states with some normalization. Our goal is to create
a matrix V (shown in Eq. (2)) which represents the system
with the ancilla. We then modify the initial input |0〉|ψ〉 to
this extended system V (the initial state of ancilla is taken
as |0〉) by using quantum operations such that the application
of V to this modified input |ψ̃〉 includes the output given in
Eq. (1) with a normalization constant κ

V |ψ̃〉 =

⎛
⎜⎜⎜⎝

V1

V2

. . .
VX

⎞
⎟⎟⎟⎠ |ψ̃〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

κβ1
...

κβ2
...

κβN

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (2)

where each Vi has some distinct rows of U as their leading
rows. Adding a sufficient number of ancilla qubits to control
each Vi uniformly (as shown in Fig. 1) permits us to produce
the circuit equivalent of matrix V in the above equation. If
we assume that the first row of Vi is (or includes) the ith row

FIG. 1. The number of qubits on the ancilla determines the number of Vis
and hence the size of V in Eq. (2).

FIG. 2. Block circuit diagram to simulate U by modifying the input |0〉|ψ〉
to |ψ̃〉 and constructing V in two steps: the formation of the elements of U
in V and bringing the same row elements in U to the first rows of Vis in V ,
combination. The necessary gates to form V and to also transform |0〉|ψ〉 to
|ψ̃〉 will generate the circuit.

of U, then we need to use (X = N), such Vi blocks as shown
in Eq. (2).

The quantum operations to construct the matrix V and
the operations to modify the input |0〉 ⊗ |ψ〉 form the circuit
that simulates the given operator. That means, steps to form
rows of U in V and also to transform |0〉|ψ〉 to |ψ̃〉 generate
the general circuit design for the simulation of U. One way to
formulate these steps and to build Vi matrices and the input
|ψ̃〉 is as follows: First, the system is extended by adding aux-
iliary qubits. These ancilla qubits uniformly control different
block quantum operations, Vis, on the main n qubits (in this
paper, n or (n + 1) number of auxiliary qubits are used). After
the formation of all elements of U which we call the forma-
tion step, the same row elements of U are brought to the first
row of each Vi which we call the combination step. The input
is modified (|0〉|ψ〉 → |ψ̃〉) by a small circuit such that V |ψ̃〉
produces an output which includes the normalized N states
expected from the operation U|ψ〉. We call this step the input
modification step. The measurement results for these N states
exactly simulate U|ψ〉. The circuit design to be found with
these steps can be drawn as a block circuit diagram (as shown
in Fig. 2). This approach provides a new way to find circuit
designs. Hence, we will describe two different programmable
circuit schemes based on the block circuit in Fig. 2.

III. GENERATION OF PROGRAMMABLE CIRCUITS

A. The first circuit design

In this design, first we create all elements of U at the
diagonal positions of V by using one rotation gate for each
element of U, formation step. In the combination step, the
elements on each ith row of U are collected in the first row of
each Vi .

1. Formation step

In this step, the elements of U are tiled across the diago-
nal of a new higher-dimensional matrix Vf . This is a block di-
agonal matrix with 2 × 2 blocks across the diagonal. For each
element of U, one rotation gate is used. The angular value for
the gate is determined to form an element of U as its cosine
value. Controlling such gates in a uniform binary coded fash-
ion produces the matrix which has all elements of U on its
diagonal

Vf =

⎛
⎜⎝

R1

. . .
RN2

⎞
⎟⎠

2N2×2N2

, Rj =
(

cj sj

−sj cj

)
, (3)
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where cj = cos(arccos(uj )) generating the jth element of U and sj = sin(arccos(uj )). We use (n + 1) number of ancilla qubits
to uniformly control each Rj, 1 ≤ j ≤ N2.

2. Combination step

To bring the same row elements of U to the first rows of the Vis, we need a quantum operation Vc which will produce the matrix
V = VcVf represented as

⎛
⎜⎜⎜⎝

K

K

. . .
K

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

c1 s1

−s1 c1

. . .
cN2 sN2

−sN2 cN2

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ku11 · ku12 . . . ku1N

...
...

...
...

. . .
kuN1 · kuN2 . . . kuNN

...
...

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(4)

where K should have a form similar to the following matrix:

K =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k 0 k . . . 0 k 0
0 k 0 . . . k 0 k

k 0 k . . . 0 k 0
...

...
...

...
...

...
...

0 k 0 . . . k 0 k

k 0 k . . . 0 k 0
0 k 0 . . . k 0 k

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

2N×2N

. (5)

For a system with (n+1) qubits, the single Hadamard gates on
the first n qubits generate the above matrix with k = ±1/

√
2n.

Hence, Vc is the matrix form of this operation in the system
with (2n + 1) qubits where we apply the Hadamard gates to
the (n + 1)st, nth, . . . , 3rd, and 2nd qubits from the bottom in
the circuit.

3. Input modification step

In the final matrix in Eq. (4), since the corresponding
state for the rows which possess the elements of U with the
normalization factor k are to be assigned as N chosen states
simulating U, we should modify the input in such a way that
the elements represented as “ · ”s between kuij and kui(j+1)

are disregarded. That means the initial input should be trans-
formed into |ψ̃〉 by a prior operation to the final matrix V so
that the corresponding elements in the input to “∗” elements
are set to zero

|0〉|ψ〉 → |ψ̃〉
= [α1 α2 . . . αN 0 . . . 0]T

→ [κα1 0 κα2 . . . 0 καN . . . κα1 0 κα2 . . . 0 καN ]T ,

(6)

where κ is a normalization constant. It is easy to see that this
modification can be succeeded by simple Hadamard gates on
the first n qubits, and sequential swap operations between the
(n+1)st and the remaining n qubits.

The equivalent circuit simulating any U is drawn in Fig. 3
for n qubit system by adding n + 1 ancilla qubits and replac-
ing the block circuits in Fig. 2 with the explicit circuits found
above.

At the end of this circuit, which can be decomposed into
one- and two-qubit gates by using the decomposition tech-
nique discussed in Sec. IV, the following set of N states ex-
actly simulates the given unitary U after normalization:

|0 . . . 000 − 0 . . . 0〉,
|0 . . . 010 − 0 . . . 0〉,

... (7)

|1 . . . 110 − 0 . . . 0〉,
where the dashes are used to separate the main and the
ancillary.

In Appendix A, we give an example of the explicit matri-
ces used for each step of the algorithm.

B. The second circuit design

In the first circuit design, the elements of U are initially
formed on the diagonal of V by using uniformly controlled

FIG. 3. The first circuit design for a given general matrix: the initial
Hadamards and the SWAPs are to modify the input, and the last Hadamards
carry the elements to the first rows of Vis (combination step). The uniformly
controlled quantum gates in the middle form all elements of U on the diago-
nal of V (formation step).
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rotation gates. Here, we take a group of elements from a row
of U and create them as the leading row of small block ma-
trices by preserving the ratios between the elements. Using
a rotation gate for each two of these initial small blocks, we
create larger block matrices which will have more elements of
U in their first rows. This combination of steps is iteratively
done until the final Vis with leading rows having the rows of
U as in Eq. (2) are constructed. Since the final blocks, Vis,
are N × N, the matrix V is N2 × N2; therefore, n qubits are
needed for the ancilla. The input modification step follows the
same idea as described for the first design.

1. Formation step

As stated above, instead of forming matrix elements at
the diagonal positions by using a rotation gate for each ele-

ment of U, a group of elements is created in the first row of
each block with the same ratio as those elements in the orig-
inal matrix. For instance, if the initial blocks are of dimen-
sion 2 × 2, the first row implements two elements, uij and uik,
of U. Thus, the ratio between the first element and the sec-
ond element of a 2 × 2 block matrix is the same as uij/uik

(since the block is 2 × 2, the elements of the block matrix are
the cosine and sine values of an angle θ x which provides the
equality cos (θ x)/sin (θ x) = uij/uik). In our circuit designs, we
will assume k = j + 1, and so the first row elements of each
block implement the ratios of the elements in the same order
as the original matrix. Therefore, if the first blocks are of di-
mension d × d; the total number of initial blocks will be N/d
since each block implements d number of elements. The fol-
lowing matrix represents the formation step for 2 × 2 initial
blocks:

Vf =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k1
1u11 k1

1u12

−k1
1u12 k1

1u11

. . .
k1

N
2
u1N−1 k1

N
2
u1N

−k1
N
2
u1N k1

N
2
u1N−1

. . .
kN

N
2
uNN−1 kN

N
2
uNN

−kN
N
2
uNN kN

N
2
uNN−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (8)

where ki
j s are the normalization constants, and uijs are the

elements of U. The Vi block operations in Fig. 4 produce a
matrix Vf with 4 × 4 block matrices on its diagonal.

2. Combination step

After the formation with ratios, blocks are combined us-
ing one rotation gate for each pair of two blocks so as to form
new larger blocks with new normalization constants that pre-
serve the original ratios of the elements. Each of these new
blocks has twice as many elements as the former blocks. As
an example, we will combine two 4 × 4 matrices located on
the diagonal of the matrix V8

V8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k1u1 . . . k1u4

· . . . ·
· . . . ·
· . . . ·

k2u5 . . . k2u8

· . . . ·
· . . . ·
· . . . ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (9)

where and k1 and k2 are the normalization factors. The fol-
lowing matrix, Vc8 , can be used as a combination matrix to

generate an 8 × 8 larger block from the above pair of two
4 × 4 blocks:

Vc8 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

cx 0 0 0 sx 0 0 0
0 cx 0 0 0 sx 0 0
0 0 cx 0 0 0 sx 0
0 0 0 cx 0 0 0 sx

−sx 0 0 0 cx 0 0 0
0 −sx 0 0 0 cx 0 0
0 0 −sx 0 0 0 cx 0
0 0 0 −sx 0 0 0 cx

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(10)

where cx = cos(θx), sx = sin (θ x), and θ x is an angle to
achieve the required ratio. The matrix multiplication Vc8V8

produces a matrix with the leading row [kxu1 . . . kxu8], where
kx = sinx × k2 and kx = cosx × k1.

It is easy to see that the matrix Vc8 can be written as
R(2θ x) ⊗ I ⊗ I. Hence, any such general combination matrix
can be written as R ⊗ ID where D is the size of the blocks to
be combined by using Vc; and R is a general one qubit rotation
gate. This means that for the blocks operating on c qubits, if
we apply a rotation gate to the (c + 1)st qubit, it will be equiv-
alent in matrix form to the operation VcV2c+1 . Hence, putting
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FIG. 4. The second circuit with 4 × 4 initial blocks: The differently controlled quantum gates in the networks, after the Vi blocks, combine small blocks and
build the N × N blocks at the end. The initial Hadamards are for the modification of the input. The Vi blocks are for the formation step.

single rotation gates on (c + 1)st, (c + 2)nd, . . . , nth qubits
generates an N × N matrix. Furthermore, by controlling each
Vc operation (or equivalently single rotation gates, Rs) uni-
formly by the upper qubits in the circuit (see the uniformly
controlled rotation gates located after the Vi block operations
in Fig. 4), we can generate N such separate blocks and the
following final matrix:

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

u11 . . . u1N

...
...

...
. . .

uN1 . . . uNN

...
...

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

(11)

Since the resulting rows in each block are unit vectors and
have the same ratio as the row elements of U, they are equal
to the corresponding rows of U. (The final normalization con-
stants become equal to 1.)

For the general case, if the initial blocks are operating on
the last c qubits, we need to use N/2c uniformly controlled
rotation gates on each main qubit (excluding the last c qubits)
in order to recursively combine small blocks. At the end, we
have N × N blocks whose leading rows are the rows of U as
shown in Eq. (11).

3. Input modification (|0〉|ψ〉 → |ψ̃〉)
Modification of the input [α1 α2 . . .αN 0. . . 0]T as

[κα1. . . καN|κα1. . . καN|. . . |κα1. . . καN]T with the normal-
ization constant κ allows us to simulate U by using V in
Eq. (11) on the chosen N states

|0 . . . 000 − 0 . . . 0〉,
... (12)

|1 . . . 111 − 0 . . . 0〉.
This input with κ = 1/

√
2N can be produced by applying the

Hadamard gates to all ancilla qubits at the beginning of the
circuit.

Consequently, the general circuit design shown in Fig. 4
is obtained which is able to simulate any real unitary matrix.
For more explicit matrix forms and illustrative details, please
refer to Sec. A 2 of Appendix A.

IV. COMPLEXITY ANALYSIS OF THE CIRCUITS

In the cases of classical and quantum complexities of the
circuits explained above, it is easy to see that they depend on
mostly the costs of uniformly controlled networks such as the
one in Fig. 5(a). Such a network controlled by k qubits can be
decomposed in terms of 2k CNOT gates and 2k single rotation

FIG. 5. (a) A gray-coded multi-control network. (b) The decomposition of the gray-coded network in (a) into CNOT and single quantum gates.
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gates.12 For instance, the circuit as illustrated for k = 2 in
Fig. 5(a) can be decomposed as in Fig. 5(b). The angle values
in the decomposed circuit are found to be the solution of the
system of the linear equation Mkθ = φ

Mk

⎛
⎜⎜⎜⎝

θ1

θ2
...

θ2k

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

φ1

φ2
...

φ2k

⎞
⎟⎟⎟⎠ , (13)

where k is the number of control qubits in the network, and
the entries of M are defined as

Mij = (−1)bi−1.gj−1 , (14)

in which the power term is found by taking the dot product of
the standard binary code of the index i − 1, bi−1, and the bi-
nary representation of j − 1th gray-coded integer, gj−1. Since
Mk is a column permuted version of the Hadamard matrix, we
see that M is unitary. Thus, (Mk)−1 = 2−k(Mk)T, and the new
angle values in the decomposed circuit are the result of the
mere matrix vector multiplication12

θ = 2−k(Mk)T φ. (15)

A. The complexity of the first circuit design

1. The classical complexity

In the first circuit diagram (see Fig. 3), since there is only
one such network, we need to multiply the 22n × 22n ma-
trix by the vector of dimension 22n constructed by taking the
arc-cosines of every element of U. Hence, the classical com-
plexity for the first circuit is O(24n). However, since M is the
permuted version of the Hadamard matrix, by using the fast
Hadamard transform,21 which requires O(N logN ) computa-
tions for the transform of a vector by the Hadamard matrix,
this can be achieved in

O(22nlog(22n)) = O(2n22n). (16)

2. The quantum complexity

The quantum complexity of the circuit is the number of
gates required for the decomposition of the network, the com-
bination of the blocks and the input modification: 22n CNOT,
22n single rotation, 2n Hadamard, and n SWAP gates.

B. The complexity of the second circuit

The classical and the quantum complexities for the sec-
ond circuit are determined by the number of networks which
are formed by putting the quantum gates in blocks controlled
uniformly together as shown in Fig. 6 and by the combina-
tion steps. Since the quantum gates in different blocks with
the same angles operate for every case of the control qubits,
putting them together do not produce networks. Instead, they
need to be applied only once such as the controlled X gates

FIG. 6. The circuit in (a) with 4 × 4 initial blocks can be represented as in
(b) by using the circuit given in Fig. (7). Without changing the order of the
gates having the same control state, the gates can be moved to form uniformly
controlled networks as in (c): If a gate has the same angle value for all control
states such as the control X gates in the circuit, they are equal to a single gate
(in the case of X gates in the circuit, only one CNOT is required).

shown in Fig. 6(c). Hence, if the initial blocks of 2c × 2c (op-
erating on c qubits) include m different quantum gates (the
type of the gates are the same, but each requires different an-
gles in different blocks such as R1

1 and R8
1 in Fig. 6), these

blocks together produce m gray-coded networks controlled by
22n−c qubits.

In addition, in the combination step, we use binary coded
networks on each main qubit excluding the last c qubits to
produce N × N blocks. Thus, we will also have n − c gray-
coded networks for the combination step for which the num-
bers of control qubits go down by one from one combination
step to another (or from one gray-coded network to another).
The classical and the quantum complexity will be determined
mostly by the decompositions of these m + (n − c) networks.

1. Classical complexity

As mentioned above, in the formation step, the combi-
nation of decomposed block circuits together form m gray-
coded networks for m different gate as represented for two-
qubit blocks in Fig. 6. Hence, to find the decompositions
of these networks as in Fig. 5(b) by the formula given in
Eq. (15), m number of matrix-vector multiplications are
needed: The dimensions of the matrices are 22n−c × 22n−c

and the dimensions of the vectors are 22n−c. Using the fast
Hadamard transform, the complexity for this part is found to
be Of = O(m(2n − c)(22n−c)) instead of O(m(22n−c)2) by the
naïve matrix vector multiplication.

Furthermore, the combination step is the summation of
the computations done for finding the angles of (n − c) gray-
coded networks (remember that the number of control qubits
decreases by one from one network to another). This is equal
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to O((22n−c − 1)2) + O((22n−c − 2)2) + . . . + O((22n−c−n+c)2)
= O(24n − 2c − 22n) by the naïve matrix vector multiplication.
By the fast Hadamard transform, the complexity of the com-
bination step is as follows:

Oc = O((2n − c − 1)(22n−c−1)) + O((2n − c − 2)(22n−c−2))

+ . . . + O(n2n)

= O(2 × (1 − (2n − c)22n−c−1 + (2n − c − 1)22n−c))

−O(2 × (1 − n2n−1 + (n − 1)2n))

= O((2n − c − 2)22n−c − (n − 2)2n). (17)

Thus, while the total complexity by the naïve multiplication
is

O(24n−2c − 22n) + O(m(22n−c)2)

= O((m + 1)24n−2c − 22n), (18)

by the fast Hadamard transform, it is

Of + Oc = O((m + 1)(2n − c)22n−c − 22n−c+1

− (n − 2)2n)). (19)

2. The quantum complexity

In terms of the quantum complexity, the analysis follows
the same structure: as mentioned, m different gates in the
blocks on c qubits create m networks controlled by 2n − c
qubits. The decomposition of these networks requires m22n−c

CNOT and the same number of single gates.
Since n − c combinations (n − c network) are nec-

essary, the complexity of the combination step is the sum-
mation of n − c terms: 22n−c − 1+22n−c − 2+ · · · +22n−c−n+c

= 22n−c − 2n.
Then the total CNOT complexity reads as

22n−c − 2n + m22n−c + 	 = (m + 1)22n−c − 2n + 	, (20)

where 	 represents the common gates in each block that
needs to be run only once.

Example: As an example, the complexity of a general
4 × 4 block circuit can be found as follows: By using the
Schmidt decomposition,4 any 1 × 4 unit vector ux can be de-
composed as: ux = ∑2

i=1 aiv1
i ⊗ v2

i . Since V1 and V2 com-
posed of v1

i and v2
i vectors are 2 × 2 unitary matrices, these

matrices (with the elements cos1 and sin1 for V1, and cos2

and sin2 for V2) and the coefficients satisfying |a1|2+|a2|2
= 1 can be considered as the rotation gates. For the coeffi-
cients, a1 and a2 are the cosine and the sine values of a rotation
gate (a1 = cosa and a2 = sina). The resulting decomposition
becomes equal to the following:

uT
x =

⎛
⎜⎜⎜⎝

a1cos1cos2 + a2sin1sin2

−a1cos1sin2 + a2sin1cos2

−a1sin1cos2 + a2cos1sin2

a1sin1sin2 + a2cos1cos2

⎞
⎟⎟⎟⎠ , (21)

FIG. 7. Quantum circuit which is found by following the Schmidt decompo-
sition and can generate any vector of dimension 4 as the first row of its matrix
representation.

which requires three rotation gates in general. The circuit
given in Fig. 7 forms any ux as the leading row of its
4 × 4 matrix.

Therefore, taking this circuit to implement the blocks in
Fig. 4 gives c = 	 = 2, and m = 3; hence, the CNOT com-
plexity of the whole circuit in Fig. 4 reads as 22n − 2n+2.
Also note that if the blocks in the circuit shown in Fig. 4 were
of dimension 2 × 2, then the complexity would be 22n − 2n.

C. Comparison with the non-programmable
circuit designs

The reported non-general circuit decompositions have
the CNOT complexities ranging from O(n322n) to the most
efficient one 3

4 22n − 3
2 2n. The proven lower bound for the

CNOT complexity is (22n−2 − 3n/4 − 1/4) without using any
auxiliary qubits.20 Even though the circuit designs given in
this paper are general and fixed size for any operator, their
complexities are greater by roughly a factor of 2 compared
to those non-programmable circuits. In addition, if we can
make m less than or equal to 2c−2, then we can also go be-
low the lower bound. This is likely to happen because the
common quantum gates in the blocks (as two CNOTs in
4 × 4 blocks) do not affect the upper bound of the complex-
ity. Hence, by benefiting from this property, the lower bound
complexity may be reduced with the use of higher Hilbert
spaces.

V. DISCUSSION AND CONCLUSION

A. Programmable quantum chips

The circuit designs given here are independent of the type
of operator; hence, they can be used to design general purpose
quantum processors and quantum chips in which the angles
are set by a preprocessing unit. They can also help in the de-
sign of possible quantum gate arrays.7 In addition, because the
circuit designs are highly dependent on the matrix elements,
for the application specific circuits aimed to implement partic-
ular types of systems, any level of sparsity in the system may
reduce the number of gates significantly in the general design;
hence, more efficient quantum chips can be built for particu-
lar uses. For instance, if half of each of the row elements are
zero in the given matrix, considering the first approach, the
blocks at the end of the combination steps can be made to
have the dimension (N/2 × N/2). Hence, this will lead the cir-
cuit to require fewer combination steps (the number of qubits
in ancilla is reduced by one), which lowers both the classical
and CNOT complexities and makes any possible fabrication
easier.
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B. Finding angles

In the case of finding the angle values on classical com-
puters for a given unitary operator, the process can be paral-
lelized conveniently to find the angles. For instance, the dis-
tribution of each row to the different cores may be one way
of parallelization of the method. This can be further improved
and designed in terms of more small blocks. And so the com-
putation time to generate angles for both circuits can be very
fast.

The combination procedure described for both circuit de-
signing processes can be further improved to combine circuits
for different unitary operations by considering them as initial
blocks. One of the individual blocks used to generate a row
of the given matrix can also be used as the state preparation
circuit (for instance, Fig. 7) for an arbitrary circuit. Further-
more, the circuits generated by the first approach have high
resemblance to the qubus quantum computer.22 Similar ideas
can be used to implement circuit design techniques for this
type of quantum computers as well.

C. Complex cases

It is important to note that in this paper, even though real
matrices are considered, it is straightforward to implement
any complex case as well by considering each rotation gate as
also being able to produce any complex element of a unitary
matrix in the first circuit design. This may require more than
one simple rotation gate, but it shall not increase the upper
bound of the quantum complexity. However, the modification
for the second circuit may not be as simple as for the first one:
this may require additional gates during the combination and
formation steps.

D. Simulation of molecular Hamiltonians

The exponential growth of computational cost with the
number of atoms is a huge computational challenge for the
exact quantum chemistry calculations. Even for a simple
molecule like methanol, using only the 6-31G** basis for
the valence electrons, there are 50 orbitals. The 18 valence
electrons can be distributed in these orbitals in any way that
satisfies the Pauli exclusion principle. This leads to about
1017 possible configurations making an exact or full config-
uration interaction calculation almost impossible on classical
computers.6 However, it has been shown that a quantum com-
puter can be used to estimate the ground and excited state en-
ergies of molecules efficiently.6, 23–32 For the electronic struc-
ture simulation on a quantum computer, one has to perform
the following steps: prepare the initial wave function of the
system; present the evolution operator U = e−iHt for a given
atomic and molecular Hamiltonian H in terms of quantum
gates array; and apply the phase estimation algorithm to find
the energy eigenvalues.32 Thus, for the simulation of a quan-
tum system, it is necessary to find an equivalent quantum cir-
cuit to the unitary propagator of the Hamiltonian represent-
ing that system. The molecular electronic Hamiltonian, in the
Born-Oppenheimer approximation, is described in the second

quantization form as6,16, 27

H =
∑
pq

hpqa
†
paq + 1

2

∑
pqrs

hpqrsa
†
pa†

qasar , (22)

where the matrix elements hpq and hpqrs are the set of one-
and two-electron integrals, and aj and a

†
j are the spinless

fermionic annihilation and creation operators. Let the set of
single-particle spatial functions constitute the molecular or-
bitals {ϕ(r)}Mk=1 and the set of spin orbitals {χ (x)}2M

p=1 be de-
fined with χp = ϕiσ i and the set of space-spin coordinates
x = (r, ω) where σ i is a spin function. The one-electron inte-
gral is defined as6

hpq =
∫

dxχ∗
p(x)

(
−1

2
∇2 −

∑
α

Zα

rαx

)
χq(x)

= 〈ϕp | H (1) | ϕq〉δσpσq
, (23)

and the two electron integral is

hpqrs =
∫

dx1dx2
χ∗

p(x1)χ∗
q (x2)χs(x1)χr (x2)

r12

= 〈ϕp | 〈ϕq | H (2) | ϕr〉 | ϕs〉δσpσq
δσrσs

, (24)

where rαx is the distance between the αth nucleus and the
electron, r12 is the distance between electrons, 
2 is the
Laplacian of the electron spatial coordinates, and χp(x) is
a selected single-particle basis: χp = ϕpσ p, χq = ϕqσ q, χ r

= ϕrσ r, and χ s = ϕsσ s.
To describe the hydrogen molecule in minimal basis

which is the minimum number of spatial functions required to
describe the system, one spatial function is needed per atom
denoted ϕH1 and ϕH2. The molecular spatial-orbitals are de-
fined by symmetry: ϕg = ϕH1+ϕH2 and ϕu = ϕH1 − ϕH2;
which correspond to four spin orbitals: |χ1〉 = |ϕg〉|α〉, |χ2〉
= |ϕg〉|β〉, |χ3〉 = |ϕu〉|α〉, and |χ4〉 = |ϕu〉|β〉. The STO-3G
basis is used to evaluate the spatial integrals of the Hamilto-
nian which is defined as H = H (1) + H (2), where since hpqrs

= hpqsr, H(1) and H(2) are simplified as6,16, 27

H (1) = h11a
†
1a1 + h22a

†
2a2 + h33a

†
3a3 + h44a

†
4a4 (25)

and

H (2) = h1221a
†
1a

†
2a2a1 + h3443a

†
3a

†
4a4a3 + h1441a

†
1a

†
4a4a1

+h2332a
†
2a

†
3a3a2 + (h1331 − h1313)a†

1a
†
3a3a1

+ (h2442 − h2424)a†
2a

†
4a4a2 + (h1423)(a†

1a
†
4a2a3

+ a
†
3a

†
2a4a1) + (h1243)(a†

1a
†
2a4a3 + a

†
3a

†
4a2a1). (26)

The spatial integral values evaluated for atomic distance
1.401 a.u., the Hamiltonian matrix found as a 16 × 16
matrix,6 so 4 qubits are required to implement the unitary
propagator of this Hamiltonian which is found from e−iHt by
setting t = 1 (see the note in Ref. 33).

The accuracy of the circuit design for the unitary prop-
agator also determines the accuracy of the simulation. The
generation of quantum circuits by using matrix decomposi-
tion techniques or global optimization methods34 (as done for
water and hydrogen molecules in Ref. 6) requires searching a
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FIG. 8. The circuit for the simulation of the hydrogen molecule. The angle
values for the rotation gates are determined to create the elements of ŨH2 :
There are only 19 rotation gates, the rest are X gates in order to get the right
order for the elements after the combination. For diagonal elements of ŨH2 ,
these rotations are only around z-axis. For nonzero-diagonal elements, ro-
tation about z-axis followed by rotations about y-axis. The angles for these
gates are given in Table I.

huge complex space and simulation of the unitary matrices of
quantum systems on classical computers. For large matrices,
this hinders the efficiency, and hence, the accuracy of the cir-
cuits. Since the angles for the rotation gates in our circuits are
determined from the matrix elements directly (for instance,
in the first design, Fig. 3), we only take the arcosine of the
values, and generating these angles requires only a few com-
putations; the accuracy and the efficiency of the circuits are
always high. This helps to get very accurate circuit designs
for the simulation of quantum systems. For instance, for the
16 × 16 unitary propagator of hydrogen molecule given in
Ref. 6, nine qubits are required in the circuit scheme given
in Fig. 3. Since the unitary propagator is highly sparse and
has only 19 nonzero elements, most of the uniformly con-
trolled gates in the circuit will be identity except 19 of them.
Hence, in Appendix B we have shown how to reduce the num-
ber of qubits to 6 qubits, Fig. 8. We give the rotation values
for the gates in Table I. Therefore, since our circuit designs

TABLE I. Parameters for the rotation gates.

State of control qubits Matrix elements Angle for Rz Angle for Ry

00000 0.9788−0.2049i − 0.4127 0
00010 0.3987+0.9171i 2.3214 0
00100 0.3987+0.9171i 2.3214 0
00110 − 0.2607+0.9517i 3.6763 0.3253
00111 0.1401−0.0817i − 1.0559 2.8158
01000 0.1401−0.0817i − 1.0559 2.8158
01001 − 0.2607+0.9517i 3.6763 0.3253
01011 0.9354+0.3535i 0.7226 0
01101 0.3189+0.9478i 2.4925 0
01110 0.4766+0.8604i 2.1299 0.3629
01111 − 0.1577+0.0874i 5.271 2.779
10000 − 0.1577+0.0874i 5.271 2.779
10001 0.4766+0.8604i 2.1299 0.3629
10011 0.3130+0.9498i 2.5049 0
10101 0.3189+0.9478i 2.4925 0
10111 0.3130+0.9498i 2.5049 0
11001 0.9569+0.2410i 0.4934 0
11011 0.8889+0.4582i 0.9519 0
11101 0.8889+0.4582i 0.9519 0
11111 1 0 0

have fixed designs, using different basis sets or parameters to
compute the Hamiltonian will not change the circuit design
and the accuracy of it.

In summary, we present general programmable quantum
circuits which can simulate any given 2n × 2n real matrix.
Because of the structure of the circuits, they can be used to
fabricate specific or general purpose quantum chips and pro-
cessors. Since the circuit designs are highly dependent on the
matrix elements; for the application specific circuits aimed to
implement particular type of systems, any level of sparsity
in the system may reduce the number of gates significantly.
In addition, we show that the generation of circuits with the
complexity less than the lower bound is possible by making
m ≤ 2c−2 and increasing 	 in the given complexity.
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APPENDIX A: THE EXPLICIT ILLUSTRATION OF THE
STEPS

Here, we detail the implementation of the input modifi-
cation, the formation (Vf ), and the combination (Vc) steps. A
sketch of the matrix format of the operations can be found in
Eq. (A3)–for the one-qubit case in the first circuit design–and
Eqs. (A8) and (A9)–for the two-qubit case in the second cir-
cuit design; here, blanks denote zeros and dots denote matrix
parts of no interest for the final operation.

1. First circuit design

Starting with an arbitrary input, |ψ〉 = (α0, α1)T, and the
following arbitrary unitary matrix:

U =
(

u00 u01

u10 u11

)
, (A1)

the first method requires 2n + 1 = 3 qubits for the simulation
with the input

|ψinitial〉 = |0〉 ⊗ |0〉 ⊗ |ψ〉 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0

α1

0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

The followings represent the formation matrix, Vf , the
matrix after the combination step, V and the modified input,
|ψ̃〉:
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Vf =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u00 ·
· ·

u01 ·
· ·

u10 ·
· ·

u11 ·
· ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, V = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u00 · u01 ·
· · · ·
· · · ·
· · · ·

u10 · u11 ·
· · · ·
· · · ·
· · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |ψ̃〉 = 1√
2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0

0
α1

0
α0

0
α1

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A3)

For illustration purposes, below we also present full forms of some of the operators and the output vector for the same case:
The full form of the resulting matrix from the formation step is as follows:

Vf =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u00

√
1 − u2

00 0 0 0 0 0 0

−
√

1 − u2
00 u00 0 0 0 0 0 0

0 0 u01

√
1 − u2

01 0 0 0 0

0 0 −
√

1 − u2
01 u01 0 0 0 0

0 0 0 0 u10

√
1 − u2

10 0 0

0 0 0 0 −
√

1 − u2
10 u10 0 0

0 0 0 0 0 0 u11

√
1 − u2

11

0 0 0 0 0 0 −
√

1 − u2
11 u11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A4)

The combination matrix VC and the matrix for input modification VM are defined as

Vc =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0 1√
2

0 0 0 0 0

0 1√
2

0 1√
2

0 0 0 0
1√
2

0 − 1√
2

0 0 0 0 0

0 1√
2

0 − 1√
2

0 0 0 0

0 0 0 0 1√
2

0 1√
2

0

0 0 0 0 0 1√
2

0 1√
2

0 0 0 0 1√
2

0 − 1√
2

0

0 0 0 0 0 1√
2

0 − 1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, Vm =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1√
2

0 0 0 1√
2

0 0 0

0 0 1√
2

0 0 0 1√
2

0

0 1√
2

0 0 0 1√
2

0 0

0 0 0 1√
2

0 0 0 1√
2

1√
2

0 0 0 − 1√
2

0 0 0

0 0 1√
2

0 0 0 − 1√
2

0

0 1√
2

0 0 0 − 1√
2

0 0

0 0 0 1√
2

0 0 0 − 1√
2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A5)

For the initial input |ψ initial〉 as in Eq. (A2), the final out-
put state |ψfinal〉 becomes

|ψf inal〉 = VcVf Vm|ψinitial〉

= 1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0u00 + α1u01

−α0

√
1 − u2

00 − α1

√
1 − u2

01

α0u00 − α1u01

−α0

√
1 − u2

00 + α1

√
1 − u2

01

α0u10 + α1u11

−α0

√
1 − u2

10 − α1

√
1 − u2

11

α0u10 − α1u11

−α0

√
1 − u2

10 + α1

√
1 − u2

11

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A6)

Clearly, the normalized states |00 − 0〉 and |10 − 0〉 sim-
ulate the original given system.

2. Second circuit design

For the same case, since the second circuit design ini-
tially works at least a pair of matrix elements, it will create
the unitary at the initial step. There will be no need for the
combination step. Hence, the output will be simulated on the
states |00〉 and |10〉. For two-qubit system below, the simula-
tion goes as follows:

U =

⎛
⎜⎜⎝

u00 u01 u02 u03

u10 u11 u12 u13

u20 u21 u22 u23

u30 u31 u32 u33

⎞
⎟⎟⎠ . (A7)

In the formation step, if we use 4 × 4 blocks as shown
in Fig. 4, there will be no need for the combination step since
we will have already formed the rows of U at the formation
step. However, if we use 2 × 2 initial blocks, we need to use
one rotation gate for each pair of the elements, then the com-
bination step. Thus, at the end of the formation step, we get
the following matrix:
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Vf =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

k0u00 k0u01

· ·
k1u02 k1u03

· ·
k2u10 k2u11

· ·
k3u12 k3u13

· ·
k4u20 k4u21

· ·
k5u22 k5u23

· ·
k6u30 k6u31

· ·
k7u32 k7u33

· ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

(A8)

where kis are the normalization constants. After the sequential combination steps and the modification on the input, we get the
following matrix and the modified input:

V =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

u00 u01 u02 u03

· · · ·
· · · ·
· · · ·

u10 u11 u12 u13

· · · ·
· · · ·
· · · ·

u20 u21 u22 u23

· · · ·
· · · ·
· · · ·

u30 u31 u32 u33

· · · ·
· · · ·
· · · ·

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, |ψ̃〉 = 1/2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

α0

α1

α2

α3

α0

α1

α2

α3

α0

α1

α2

α3

α0

α1

α2

α3

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(A9)

The final state is equivalent to |ψf inal〉 = V |ψ̃〉. In
|ψfinal〉, the states |0000〉, |0100〉, |1000〉, and |1100〉 are
the respective states that simulate the original given unitary
matrix.

APPENDIX B: EXPLICIT CIRCUIT FOR THE UNITARY
PROPAGATOR OF THE HYDROGEN MOLECULE

As mentioned, the unitary matrix, UH2 , for the hydrogen
molecule has 19 nonzero elements, 15 of them located at the
diagonal. Since the unitary is 16 × 16 we need 4 main and 5
ancilla qubits for the first circuit design given in Fig. 3. And
the uniformly controlled rotation gates in the formation steps
are the Ry gates followed by Rz gates where we use identity
for the zero elements. However, we can benefit from the spar-
sity of the matrix and reduce the number of ancilla to 2 qubits

instead of 5: The non-diagonal matrix elements are located at
(13, 4), (4, 13), (7, 10), and (10, 7), where (i, j) are the row
and column indices. We apply a permutation matrix, P, to re-
duce the bandwidth of the matrix. PUH2 takes non-diagonal
elements (13, 4), (4, 13), (7, 10), and (10, 7) to (5, 4), (4, 5),
(7, 8), and (8, 7) which creates another unitary, ŨH2 . ŨH2 is
a structured matrix where all the elements are located on the
(i, i), (i, i + 1), or (i − 1, i) positions. Hence, we can use 2
qubits for ancilla and 4 qubits for the main to create matrix V

having 4 × 4 block matrices on its diagonal by using only one
Hadamard gate in the combination step. In the formation step,
the control qubits for Ry gates and Rz gates are determined to
form the couple of (i, i) and (i, i + 1), or (i − 1, i) and (i, i)
elements on the first row of these 4 × 4 matrices. The angle
values are determined from the polar representation of each
element and given in Table I. The circuit for ŨH2 is shown
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in Fig. 8 where R̃ represents a combination of a Ry and a Rz

gates. Please note that the circuit equivalences of the permuta-
tion matrices such as P are the combinations of multi-control
CNOT gates where which elements to be switched is deter-
mined by the control qubits. And the input should be also per-
muted prior to the circuit. This can be done by simply switch-
ing the input for the qubits. At the end of this circuit, since
the leading rows of 4 × 4 matrices simulate the unitary, we
get the simulation result from the states |0〉, |4〉, |8〉, |12〉, . . . ,
|60〉.
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