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We consider the time evolution of entanglement in a finite two-dimensional transverse Ising model. The
model consists of a set of seven localized spin- 1

2 particles in a two-dimensional triangular lattice coupled
through nearest-neighbor exchange interaction in the presence of an external time-dependent magnetic field.
The magnetic field is applied in different function forms: step, exponential, hyperbolic, and periodic. We found
that the time evolution of the entanglement shows an ergodic behavior under the effect of the time-dependent
magnetic fields. Also, we found that while the step magnetic field causes great disturbance to the system, creating
rapid oscillations, the system shows great controllability under the effects of the other magnetic fields where the
entanglement profile follows closely the shape of the applied field even with the same frequency for periodic
fields. This follow-up trend breaks down as the strength of the field, the transition constant for the exponential
and hyperbolic forms, or the frequency for periodic field increase leading to rapid oscillations. We observed that
the entanglement is very sensitive to the initial value of the applied periodic field: the smaller the initial value is,
the less distorted the entanglement profile is. Furthermore, the effect of thermal fluctuations is very devastating
to the entanglement, which decays very rapidly as the temperature increases. Interestingly, although a large value
of the magnetic field strength may yield a small entanglement, the magnetic field strength was found to be more
persistent against thermal fluctuations than the small field strengths.

DOI: 10.1103/PhysRevA.83.062312 PACS number(s): 03.67.Mn, 03.65.Ud, 75.10.Jm

I. INTRODUCTION

Quantum entanglement lies at the heart of quantum theory
and has a fundamental role in modern physics [1]. Entangle-
ment is a nonlocal correlation between two (or more) quantum
systems such that the description of their states has to be done
with reference to each other even if they are spatially well
separated. Understanding and quantifying entanglement may
provide an answer for many questions regarding the behavior
of complex quantum systems [2]. Particularly, entanglement
is considered to be the physical property responsible for the
long-range quantum correlations accompanying a quantum
phase transition in many-body systems at zero temperature
[3–7]. Particular fields where entanglement plays a crucial
role are quantum teleportation, quantum cryptography, and
quantum computing, where it is considered to be the physical
basis for manipulating linear superpositions of the quantum
states to implement the different proposed quantum comput-
ing algorithms [8,9]. Different physical systems have been
proposed as reliable candidates for the future technology
of quantum computing and quantum-information processing
[10–17]. The main task in each one of these systems is to
specify a certain quantum degree of freedom as the qubit
and to find a controllable coupling mechanism to form an
entanglement among these qubits to perform efficient quantum
computing processes.

Multiparticle systems are of central interest in the field
of quantum information, in particular, quantification of the
entanglement contained in their quantum states. However,
quantum states and entanglement are very fragile due to the

*kais@purdue.edu

induced decoherence caused by the inevitable coupling to
the environment. Decoherence is considered to be one of
the main obstacles toward realizing an effective quantum
computing system [18]. The main effect of decoherence
is to randomize the relative phases of the possible states
of the considered system. Quantum error correction [19]
and decoherence-free subspace [20,21] have been proposed
to protect the quantum property during the computation
process. Still, offering a potentially ideal protection against
environmentally induced decoherence is difficult. In NMR
quantum computers, a series of magnetic pulses were applied
to a selected nucleus of a molecule to implement quantum
gates [22]. Moreover, a spin-pair entanglement is a reasonable
measure for decoherence between the considered two-spin
system and the environmental spins. The coupling between
the system and its environment leads to decoherence in
the system and vanishing of entanglement between the
two spins. Evaluating the entanglement remaining in the
considered system helps us to understand the behavior of
the decoherence between the considered two spins and their
environment [23].

In previous works, the evolution of entanglement in a
one-dimensional spin system in the presence of different forms
of external magnetic fields, modeled by the XY Hamiltonian,
was studied [24,25]. It was found that the entanglement can be
localized between nearest-neighbor qubits for certain values
of the external time-dependent magnetic fields. Moreover, as
known for the magnetization of this model, the entanglement
showed nonergodic behavior, i.e., it does not approach its
equilibrium value at the infinite time limit. Also, the same sys-
tem was investigated considering a time-dependent exchange
coupling between neighboring spins [26]. It was found that
the asymptotic behavior of entanglement at the infinite time
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limit is very sensitive to the initial values of the coupling
and magnetic field, and for particular choices we may create
finite asymptotic entanglement regardless of the final values
of coupling and magnetic field. The quantum effects in the
Ising model case showed persistence in the vicinity of both
its critical phase transition point and zero temperature as it
evolves in time.

The study of quantum entanglement in two-dimensional
systems possesses a number of extra problems compared
with systems of one dimension. A particular problem is the
lack of exact solutions. The existence of exact solutions has
contributed enormously to the understanding of the entangle-
ment for 1D systems [24,26–28]. Studies can be carried out
on interesting but complicated properties, can be applied to
infinitely large systems, and thus can use the finite scaling
method to eliminate the size effects, etc. Some approximation
methods, such as the density matrix renormalization group
(DMRG), are also only workable in one dimension [22,29–31].
So when we carry out this two-dimensional study, no methods
can be taken from previous studies. They heavily rely on
numerical calculations, resulting in severe limitations on the
system size and properties. For example, dynamics of the
system is a computationally costly property. We have to think
of a way to improve the effectiveness of computation in order to
increase the size of research objects while digging the physics
in the observable systems. It may show the general physics
or tell us the direction of less costly large-scale calculations.
In a previous work we studied the entanglement in a 19-site
two-dimensional transverse Ising model at zero temperature
[32]. The spin- 1

2 particles were coupled through an exchange
interaction J and subject to an external time-independent
magnetic field h. We demonstrated that for such a class
of systems the entanglement can be tuned by varying the
parameter λ = h/J and also by introducing impurities into
the system. The system showed a quantum phase transition at
a specific critical value of the parameter λc.

In this paper, we consider the dynamics of entanglement
in a two-dimensional spin system, where spins are coupled
through an exchange interaction and subject to an external
time-dependent magnetic field. Four forms of time-dependent
magnetic field are considered: step, exponential, hyperbolic,
and periodic. To tackle the problem, we introduce two
calculation methods: step-by-step time-evolution matrix trans-
formation and step-by-step projection. We compare them side
by side; in short, in addition to having the exact same results,
the step-by-step projection method turned out to be 20 times
faster than the matrix transformation. One section of this paper
will discuss the scalability of this method and shed light on
studies of larger systems. The finite-temperature effect is also
considered to simulate more realistic systems. We show that
the system entanglement behaves in an ergodic way in contrary
to the one-dimensional Ising system. The system shows great
controllability under all forms of external magnetic field
except the step function one, which creates rapidly oscillating
entanglement. This controllability is shown to be breakable as
the different magnetic field parameters increase. Also, it will
be shown that the mixing of even a few excited states by small
thermal fluctuation is devastating to the entanglement of the
ground state of the system. The critical temperature at which
the concurrence vanishes depends significantly on the value

of the magnetic field strength: a smaller value yields smaller
entanglement but higher critical temperature.

This paper is organized as follows. In the next section we
present our model and discuss the two different approaches to
evaluate the entanglement. In Sec. III we present and discuss
our results for the entanglement of the system under the effects
of the different magnetic fields forms at zero temperature. The
dynamics of thermal entanglement is considered in Sec. IV.
In Sec. V we explain part of our key results in light of Fermi’s
golden rule and adiabatic approximation. The extension of our
work to larger-size spin systems is discussed in Sec. VI. We
conclude in Sec. VII and discuss future directions.

II. SOLUTION OF THE TIME-DEPENDENT
TWO-DIMENSIONAL ISING MODEL

A. Model

We consider a set of seven localized spin- 1
2 particles in a

two-dimensional triangular lattice coupled through exchange
interaction J and subject to an external time-dependent
magnetic field of strength h(t). The Hamiltonian for such a
system is given by

H = −
∑
〈i,j〉

Ji,j σ
x
i σ x

j − h(t)
∑

i

σ z
i , (1)

where 〈i,j 〉 is a pair of nearest-neighbor sites on the lattice;
Ji,j = J for all sites. For this model it is convenient to define a
dimensionless coupling constant λ = h/J . We apply different
forms of the magnetic field as a function of time: step function,
exponential, hyperbolic, and periodic.

B. The evolution operator

According to quantum mechanics, the transformation of
|ψi(t0)〉, the state vector at the initial instant t0, into |ψi(t)〉,
the state vector at an arbitrary instant, is linear [33]. Therefore
there exists a linear operator U (t, t0) such that

|ψi(t)〉 = U (t, t0) |ψi(t0)〉. (2)

This is, by definition, the evolution operator of the system.
Substituting Eq. (2) into the Schrödinger equation, we obtain

ih̄
∂

∂t
U (t,t0)|ψ(t0)〉 = H (t)U (t,t0)|ψ(t0)〉, (3)

which means

ih̄
∂

∂t
U (t,t0) = H (t)U (t,t0). (4)

Further, taking the initial condition,

U (t0,t0) = I, (5)

the evolution operator can be condensed into a single integral
equation:

U (t,t0) = I − i

h̄

∫ t

t0

H (t ′)U (t ′,t0)dt ′. (6)

When the operator H does not depend on time, Eq. (6) can
easily be integrated and finally leads to

U (t,t0) = e−iH (t−t0)/h̄. (7)

062312-2
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b

a

FIG. 1. The external magnetic field in a step function form h(t) =
a at t � t0, h(t) = b at t > t0.

C. Step-by-step time-evolution matrix transformation

To unveil the behavior of concurrence at time t , we need to
find the density matrix of the system at that moment, which
can be obtained from

ρ(t) = U (t)ρ(0)U †(t). (8)

Although Eq. (6) gives a beautiful expression for the evolution
operator, in reality, U is hard to obtain because of the
integration involved. In order to overcome this obstacle, let
us first consider the simplest time-dependent magnetic field: a
step function of the form (Fig. 1)

h(t) = a + (b − a)θ (t − t0) , (9)

where θ (t − t0) is the usual mathematical step function
defined by

θ (t − t0) =
{

0 t � t0
1 t > t0

. (10)

At t0 and before, the system is time independent since
Ha ≡ H (t � t0) = −∑

〈i,j〉 σ
x
i σ x

j − a�iσ
z
i . Therefore we are

capable of evaluating its ground state and density matrix at
t0 straightforwardly. For the interval t0 to t , the Hamiltonian
Hb ≡ H (t > t0) = −∑

<i,j> σ x
i σ x

j − b�iσ
z
i does not depend

on time either, so Eq. (7) enables us to write out

U (t,t0) = e−iH (t>t0)(t−t0)/h̄, (11)

and therefore

ρ(t) = U (t,t0)ρ(t0)U †(t,t0). (12)

Starting from here, it is not hard to think of breaking an arbi-
trary magnetic function into small time intervals and treating
every neighboring intervals as a step function. Comparing the
two graphs in Fig. 2, the method has just turned ski sliding

into mountain climbing. Assuming each time interval is �t ,
setting h̄ = 1, then

U (ti ,t0)|ψ0〉 = U (ti ,ti-1)U (ti-1,ti-2)...U (t1,t0)|ψ0〉, (13)

U (ti ,t0) =
i∏

k=1

exp[−iH (tk)�t], (14)

U (ti ,t0) = exp[−iH (ti)�t]U (ti-1 − t0). (15)

Here we avoided integration; instead, we have chain multipli-
cations that can be easily realized as loops in computational
calculations. This is a common numerical technique; the
desired precision can be achieved via proper time-step length
adjustment.

D. Step-by-step projection

The step-by-step matrix transformation method success-
fully breaks down the integration but still involves the matrix
exponential, which is costly in numerical resources. We
propose a projection method to accelerate the calculations.
Let us look at the step magnetic field again (Fig. 1). For Ha ,
after a long enough time, the system at zero temperature is in
the ground state |φ〉 with energy, say, ε. We want to ask how
this state will evolve after the magnetic field is turned to the
value b. Assume the new Hamiltonian Hb has N eigenpairs Ei

and |ψi〉. The original state |φ〉 can be expanded in the basis
{|ψi〉}:

|φ〉 = c1|ψ1〉 + c2|ψ2〉 + · · · + cN |ψN 〉, (16)

where

ci = 〈ψi |φ〉. (17)

When H is independent of time between t and t0, then we can
write

U (t, t0) |ψi,t0〉 = e−iH (t>t0)(t−t0)/h̄|ψi,t0〉
= e−iEi (t−t0)/h̄|ψi,t0〉. (18)

Now the exponent in the evolution operator is a number that is
no longer a matrix. The ground state will evolve with time as

|φ(t)〉 = c1|ψ1〉e−iE1(t−t0) + c2|ψ2〉e−iE2(t−t0) + · · ·

+ cN |ψN 〉e−iEN (t−t0) =
N∑

i=1

ci |ψi〉e−iEi (t−t0), (19)

h(t)h(t)

t
t0 t

(a)

h(t)

t
t0 t1 tit

(b)

FIG. 2. (Color online) Divide an arbitrary magnetic field function into small time intervals. Every time step is �t . Treat the field within
the interval as a constant. As a result, we turn a smooth function into a collection of step functions, which makes the calculation of dynamics
possible.
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(1
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0
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-0.04
-0.02

=h/J

FIG. 3. (Color online) Dynamics of C(1,4) (solid blue line) in the seven-site system when the step magnetic field is changed from a = 0.5
to b = 1.5 (before the “critical point” h = 1.64), from a = 2 to b = 3 (after), and from a = 0.5 to b = 3 (big step across the critical point),
where time t is in units of J −1, the dashed red line indicates the concurrence corresponding to a constant magnetic field h = a, the straight
solid yellow line shows h = b, and the dot-dashed green line represents the average value of the oscillating concurrence.

and the pure state density matrix becomes

ρ(t) = |φ(t)〉〈φ(t)|. (20)

Again, any complicated function can be treated as a
collection of step functions. When the state evolves to the next
step, just repeat the procedure to get the following results. Our
test shows, for the same magnetic field, that both methods give
the same results, but projection is much faster (about 20 times
faster) than matrix transformation. This is a great advantage
when the system size increases. But this is not the end of the
problem. The summation is over all the eigenstates. Extending
one layer out to 19 sites, fully diagonalizing the 219 × 219

Hamiltonian, and summing over all of them in every time step
is breathtaking. In a later section, we will show how to further
improve the method to reduce the number of calculations,
which will pave the way toward larger systems.

E. Entanglement of formation

We confine our interest to the entanglement of two spins,
at any position i and j [34]. We adopt the entanglement of
formation, a well-known measure of entanglement [35], to
quantify our entanglement [36]. All the information needed in
this case, at any moment t , is contained in the reduced density
matrix ρi,j (t), which can be obtained from the entire system
density matrix by integrating out all the spins states except i

and j . Wootters [35] has shown that, for a pair of binary qubits,
the concurrence C, which goes from 0 to 1, can be taken as

a measure of entanglement. The concurrence between sites i

and j is defined as

C(ρ) = max{0,ε1 − ε2 − ε3 − ε4}, (21)

where εi are the eigenvalues of the Hermitian matrix R ≡√√
ρρ̃

√
ρ with ρ̃ = (σy ⊗ σy)ρ∗(σy ⊗ σy) and σy is the

Pauli matrix of the spin in the y direction. For a pair of qubits
the entanglement can be written as

E(ρ) = ε(C(ρ)), (22)

where ε is a function of the “concurrence” C,

ε(C) = h

(
1 − √

1 − C2

2

)
, (23)

where h is the binary entropy function

h(x) = −x log2 x − (1 − x) log2(1 − x). (24)

In this case, the entanglement of formation is given in terms of
another entanglement measure, the concurrence C. The matrix
elements of the reduced density matrix needed for calculating
the concurrence can be obtained numerically using one of the
two methods developed above.
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FIG. 4. (Color online) Dynamics of C(1,4) (solid blue line) in the seven-site system when the step magnetic field is changed from a = 0.5
to b = 1.5 (before the “maximum point” h = 2.61), from a = 3.5 to b = 4.5 (after), and from a = 0.5 to b = 4.5 (big step across the maximum
point), where time t is in units of J −1, the dashed red line indicates the concurrence corresponding to a constant magnetic field h = a, the
straight solid yellow line shows h = b, and the dot-dashed green line represents the average value of the oscillating concurrence.

III. DYNAMICS OF THE SPIN SYSTEM IN A
TIME-DEPENDENT MAGNETIC FIELD

A. Step magnetic field

First, we study the dynamic response of the seven-site
spin system to the external step magnetic field (Fig. 1),
the simplest form of the time-dependent function, which is
given by

h(t) = a + (b − a)θ (t − t0) . (25)

In previous work we showed that this two-dimensional spin
system has a critical point at λ = 1.64 and a maximum
reachable concurrence at λ = 2.61 [32]. Accordingly, we
design here all kinds of steps, big, small, jump, drop, and
happening before, after, or across the “critical point” (and
“maximum point”), trying to identify what will affect the
system behavior and how.

Figure 3 displays the dynamics of the pairwise entangle-
ment between sites 1 and 4, C(1,4), when the magnetic field is
changed from a = 0.5 to b = 1.5 (before the critical point h =
1.64), from a = 2 to b = 3 (after), and from a = 0.5 to b = 3
(big step across the critical point). Thick and big oscillations
appear in every graph. Dynamics of C(1,4) under similar
design (Fig. 4) but before, after, and across the maximum point
h = 2.61 shows similar oscillations. In Figs. 3 and 4, we have
plotted the concurrence corresponding to a constant magnetic
field h = a (red dashed line), h = b (straight yellow solid line),
and the average value of the oscillating concurrence (green

dot-dashed line). In the same manner, the dynamics of the
concurrence C(1,2) is explored in Figs. 5 and 6, which shows
a very similar behavior to the C(1,4) case. Examining the
dynamics of the next-nearest-neighbor concurrences C(1,5)
and C(1,7) in the same way as we did with C(1,2) and
C(1,4), we observed a very similar behavior with a much
much smaller value of the concurrence, as expected for next
nearest neighbors.

Figure 7 is used to check the behaviors of the system
going from one magnetic field value to a smaller one and the
reverse process. Both processes show the same characteristic
oscillations, although they are different. The projection method
requires mapping the ground state in h = a into all the
eigenstates of the system in h = b, whereas when we reverse
the process, mapping becomes from the ground state in h = b

to all the eigenstates of the system in h = a. The behavior of
the system is not mirrored.

No matter how we place the steps, all of them inevitably
cause oscillation. This will be explained after we study all
four kinds of external magnetic fields. But now we can answer
the questions of what will happen to the entanglement of
spins after the constant magnetic field is turned on and if
we can benefit from that, say, by using the step magnetic
field as an entanglement switch. The answer is negative
because the entanglements oscillate fast and among relatively
large values. A simple step magnetic field does not provide
a way to control or tuning the entanglement in this spin
system.
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FIG. 5. (Color online) Dynamics of C(1,2) (solid blue line) in the seven-site system when the step magnetic field is changed from a = 0.5
to b = 1.5 (before the critical point h = 1.53), from a = 2 to b = 3 (after), and from a = 0.5 to b = 3 (big step across the critical point),
where time t is in units of J −1, the dashed red line indicates the concurrence corresponding to a constant magnetic field h = a, the straight
solid yellow line shows h = b, and the dot-dashed green line represents the average value of the oscillating concurrence.

B. Exponential magnetic field

The second kind of time-dependent magnetic field we will
look at is the exponential one, which is represented by

h(t) =
{

a t � t0
b + (a − b)e−ωt t > t0

. (26)

It is a more general form than the step function; when ω → ∞,
the exponential function turns into a step function. Figure 8
highlights the effect of ω on the concurrences C(1,4) and
C(1,2). As one can see, the concurrence has the trend of
following the shape of the exponential function, where it
increases suddenly as the higher value is turned on and reaches
a certain asymptotic equilibrium value. As the transition
parameter ω increases, the concurrence shows an oscillation
that increases rapidly as we further increase ω, where, in
that case, the behavior resembles the step function case. It is
interesting to see that the concurrence asymptotic equilibrium
value, under the exponential magnetic field, coincides with the
concurrence corresponding to the higher constant magnetic
field, h = b (the blue (red) straight line corresponds to C(1,4)
[C(1,2)]), which means that the two-dimensional Ising spin
system shows an ergodic behavior in contrast to the one-
dimensional system. In all cases the edge concurrence C(1,2)
is higher than the central one, C(1,4), as expected as the latter
shares the entanglement with a higher number of other spin
pairs. Various a and b combinations are tested just as we did
for the step function, with similar results to those in Fig. 8. Of
course, changing the value of the final magnetic field leads to a

change of the equilibrium value of the concurrence following it
up and down. The concurrences C(1,5) and C(1,7) show very
similar behavior to C(1,2) and C(1,4), as shown in Fig. 9, but
with smaller magnitude.

In the sense of tuning entanglement, an exponentially
changed magnetic field can be used to vary the entanglement
from one value to another smoothly as long as long as its
transition rate is slow enough. For instance, ω = 0.1, that is,
10% of the interchange coupling J in the energy scale, is a
good choice to accomplish this task, as we will explain later.

C. Hyperbolic magnetic field

As we have seen in the previous two sections, applying
a step function or a rapid exponential function may disturb
the system and lead to a strongly oscillating concurrence.
Now let us apply another form of external magnetic field,
namely, hyperbolic, which provides a smoother interaction
with the system and reduces disturbances. The hyperbolic field
is represented by

h(t) =
{

a t � t0
(b−a)

2 [tanh(ωt) + 1] + a t > t0
. (27)

Figure 10 explores the behavior of the concurrences C(1,4)
and C(1,2) of the system under the hyperbolic field at
different transition constant values ω. Comparing the behavior
of the concurrence in this case with the exponential case
at the same frequencies, the similarity is clear, but with
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FIG. 6. (Color online) Dynamics of C(1,2) (solid blue line) in the seven-site system when the step magnetic field is changed from a = 0.5
to b = 1.5 (before the maximum point h = 2.46), from a = 3.5 to b = 4.5 (after), and from a = 0.5 to b = 4.5 (big step across the maximum
point), where time t is in units of J −1, the dashed red line indicates the concurrence corresponding to a constant magnetic field h = a, the
straight solid yellow line shows h = b, and the dot-dashed green line represents the average value of the oscillating concurrence.

much higher controllability for the hyperbolic field, with a
sharper asymptotic concurrence value. The system confirms
its ergodic behavior, as can be seen. Again, the next-nearest
concurrences C(1,5) and C(1,7) show the same behavior as
the nearest-neighbor concurrences, as shown in Fig. 11.

D. Periodic magnetic fields

In this section we test the dynamics of the system under a
different form of external magnetic field, namely, periodic. It
is represented by the sinusoidal function form

h(t) =
{

a t � t0
a − a sin(ωt + φ) t > t0

, (28)

where φ represents an initial phase of the function, which
determines the initial value of the applied magnetic field. For
φ = 0 we obtain a sin(ωt) function, which is studied in Figs. 12
and 13, while for φ = π/2 we get a cos(ωt), which is explored
in Figs. 14 and 15.

The influential factors in the sinusoidal field are amplitude
a and angular frequency ω. Figure 12(b) is a good start to
analyze them. When ω = 0.1 and a = 1, both are small, and
concurrence varies up and down in the same frequency as the
field, but little dents and big catches come out as both ω and a

increase, as shown in Figs. 12(c) and 12(d). As the frequency of
the field increases, it becomes too fast for the system to follow,
causing more imperfection in the concurrence oscillation. On
the other hand, as we have seen in the previous magnetic field

forms, larger magnetic fields do not necessarily bring larger
concurrence, so dents appear as we increase a. Even larger
magnetic fields totally break the pattern, as can be seen in
Fig. 12(d). It is interesting to see that the larger amplitudes are
not as disturbing to the nearest concurrences as they are to the
next-nearest neighbors, as can be concluded from Fig. 13.

The critical effect of the initial phase, which determines the
initial value of the field, can be seen in Figs. 14 and 15, where
the phase was chosen to be π/2, resulting in a cos(ωt) magnetic
field. As one can see, the magnetic field is initially zero, and
the concurrence is closely following the magnetic filed with
a much sharper and much less distorted profile than the sine
case. In fact, testing a middle value for the phase, between 0
and π/2, showed a concurrence with a middle profile between
the sine and cosine cases (Fig. 16). Therefore, the smaller the
initial value of the external magnetic field (best at zero) is, the
less distorted the concurrence profile is.

IV. DYNAMICS OF THERMAL ENTANGLEMENT

In this section we intend to take a glance at the properties
of entanglement in a many-body system at finite temperatures.
The states describing a system in a thermal equilibrium state
at absolute temperature T are determined by the Hamiltonian
of the system and the inverse temperature β = 1/kT , where k

is the Boltzmann constant. The thermal density matrix of the
system is ρ = Z−1e−βH , where Z = tr(e−βH ) is the partition
function of the system. Consider our step system and microstep
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FIG. 7. (Color online) Dynamics of the system when changing from one magnetic field value to a smaller one and the reverse process,
where the red straight line represents the concurrence of constant magnetic field h = a before the step, the blue oscillating part represents
concurrence behavior afterward, and time t is in units of J −1.

system shown in Figs. 1 and 2, where any form of magnetic
field can be represented by a sequence of step functions.

Assuming that the magnetic field has been divided into
a sequence of steps, a,b,c, . . . , at times t0,t1,t2, . . ., then
at t = t0, the system is in an initial equilibrium state
described by

H (a) = −
∑

<i,j>

σ x
i σ x

j − a�iσ
z
i , (29)

ρ(t0) =
∑

i e
−βEi (a)|φi〉〈φi |∑

i e
−βEi (a)

. (30)

At t1 > t0, the system evolves under the new magnetic field b,
such that

H (b) = −
∑

<i,j>

σ x
i σ x

j − b�iσ
z
i , (31)

ρ(t1) = e−iH (b)(t1−t0)ρ(0)eiH (b)(t1−t0). (32)

Similarly, at t2 > t1, we have

H (c) = −
∑

<i,j>

σ x
i σ x

j − c�iσ
z
i , (33)

ρ(t2) = e−iH (c)(t2−t1)ρ(t1)eiH (c)(t2−t1). (34)

Continuing in the same way along this sequence, we can obtain
the density matrix at any time t , which can be used to evaluate
the concurrence, as explained earlier.

One can see from the formulation that the thermal equilib-
rium (relaxation) only enters at t = 0, where we assume that
the time scale of the dynamics under study is much smaller
than the thermal relaxation time.

Figure 17 shows how concurrence evolves versus time
and temperature under step magnetic field h(t) = a at t � t0,
and h(t) = b at t > t0. Adjusting the step values leads to
similar behaviors. They all oscillate through time, which is
consistent with the results at zero temperature. When the
temperature increases, oscillations keep the shape but are
obviously weakened. As can be seen for either the step a = 1,
b = 2 or the step a = 2, b = 3, the concurrence disappears
around kT = 1.75. A value of kT = 1.75 means that when
the energy associated with temperature is 1.75 times the
exchange interaction J of the system, concurrence will be
“killed,” which shows how fragile the entanglement is in this
spin system. Figures 18 and 19 show a very similar behavior
for the concurrence of the system under other forms of the
external magnetic field, namely, exponential and hyperbolic,
respectively. The general profile of the concurrence resembles
the zero-temperature case, especially at low temperatures.
Remarkably, as the temperature increases, the concurrence
decays very rapidly close to the zero temperature, as shown in
Figs. 18(a) and 19(a), before it completely vanishes at about
the same temperature as the exponential case [Figs. 18(b)
and 19(b)].

To understand the critical temperature at which the concur-
rence vanishes better, we plot concurrence C vs temperature
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FIG. 8. (Color online) Dynamics of the concurrences C(1,2) [solid red (upper) line] and C(1,4) [solid blue (lower) line] in applied
exponential magnetic fields for frequencies ω = 0.1, 0.5, and 1, with strength a = 1, b = 2, where time t is in units of J−1. The straight dotted
red (upper) lines are concurrences C(1,2) under constant magnetic field a = 1 and b = 2, and the dotted blue (lower) lines are for C(1,4).

kT under certain constant magnetic field strength a (Fig. 20).
As the magnetic field gets big, the critical temperature gets
big too. When a is small, the zero temperature concurrence is
small and stays stable as temperature increases for a while, but
after a short time it drops dramatically. When a is close to the
maximum point (Fig. 4), the zero-temperature concurrence is
relatively large and drops all the way down as temperature in-
creases. When a passes that point, as the concurrence becomes

smaller and smaller, it has the ability to become more and more
stable over the temperature change and finally becomes zero
at relatively larger temperature. This tells us that sacrificing a
certain amount of concurrence (choosing a large a) may make
the concurrence more robust against thermal fluctuations.

In an attempt to understand the vanishing of concurrence,
we found that if only the ground state doublets are included
(others excluded by force), which are not exactly degenerate
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FIG. 9. (Color online) Dynamics of the concurrences C(1,5) [solid red (upper) line] and C(1,7) [solid blue (lower) line] in applied
exponential magnetic fields of frequencies ω = 0.1 and 0.5, with strength a = 1, b = 2, where time t is in units of J−1. The straight dotted red
(upper) lines are concurrences C(1,5) under constant magnetic field a = 1 and b = 2, and the dotted blue(lower) lines are for C(1,7).
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FIG. 10. (Color online) Dynamics of the concurrences C(1,2) [solid red (upper) line] and C(1,4) [solid blue (lower) line] in applied
hyperbolic magnetic fields of frequencies ω = 0.1, 0.5, and 1, with strength a = 1, b = 2, where time t is in units of J−1. The straight dotted
red (upper) lines are concurrences C(1,2) under constant magnetic field a = 1 and b = 2, and the dotted blue (lower) lines are for C(1,4).

due to the finite-size effect, the entanglement never vanishes at
finite temperature. However, after the one-particle excitation
continuum states are included, with higher-energy states
projected out by force, the entanglement disappears at certain
temperatures. This tells us that the mixing of the ground state
and the low-energy excited states will cause the system to lose
its entanglement. Physically, the population of the excited state
n is determined by the ratio (En − E0)/T and remains almost
zero for T < En − E0 and becomes significantly nonzero as

T > En − E0. Therefore in the well-gapped regions (very
small fields and large fields) the entanglement sustains the
T = 0 values up to a certain T ∗ and then drops to zero,
while in the critical region the entanglement starts dropping
immediately after T > 0 without a plateau region. Numer-
ically, however, T ∗ is, though related, not simply equal to
the excitation gap. This might be so because the size of the
system prevents it from revealing what only statistically holds
true. Another question to be studied is why the concurrence
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FIG. 11. (Color online) Dynamics of the concurrences C(1,5) [solid red (upper) line] and C(1,7) [solid blue (lower) line] in applied
hyperbolic magnetic fields of frequencies ω = 0.1 and 0.5, with strength a = 1, b = 2, where time t is in units of J−1. The straight dotted red
(upper) lines are concurrences C(1,5) under constant magnetic field a = 1 and b = 2, and the dotted blue (lower) lines are for C(1,7).
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FIG. 12. (Color online) Dynamics of the concurrences C(1,2) [red (upper) line] and C(1,4) [blue (lower) line] in applied sine magnetic
fields of various frequencies and field strength, ω = 0.1 and a = 1, ω = 0.5 and a = 1, and ω = 0.5 and a = 5, where time t is in units of J−1.

should come to zero in a “sudden” way like undergoing a phase
transition, in contrast to an exponential decay, as one expects
with a crossover.

V. FERMI’S GOLDEN RULE AND ADIABATIC
APPROXIMATION

For all exponential, hyperbolic, and periodic forms, when
the transition constant (frequency) ω is small, entanglement
tends to follow the change of external magnetic field; when ω

gets larger, entanglement gradually loses pace with the field.
These phenomena can be explained by Fermi’s golden rule and
the adiabatic approximation. In order for the entanglement to
follow the change in the external field, one requires that the
system does not deviate far from the ground state, which is the
adiabatic approximation.

Physically, it is equivalent to the requirement that the
characteristic frequency in the external field is much smaller
than the gap, E1(t) − E0(t). This may be demonstrated in
the following way. From time-dependent perturbation theory,
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FIG. 13. (Color online) Dynamics of the concurrences C(1,5) [red (upper) line] and C(1,7) [blue (lower) line] in applied sine magnetic
fields of various frequencies and field strength, ω = 0.1 and a = 1 and ω = 0.5 and a = 1, where time t is in units of J−1.
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FIG. 14. (Color online) Dynamics of the concurrences C(1,2) [red (upper) line] and C(1,4) [blue (lower) line] in applied cosine magnetic
fields of various frequencies and field strength, ω = 0.1 and a = 1, ω = 0.5 and a = 1, and ω = 0.5 and a = 5, where time t is units of J−1.

given a system at its ground state at t = 0, the probability
amplitude of the nth state at t > 0 is given by

cn(t) ≈ −i

h̄

∫ t

0
dt〈n|H ′(t)|0〉 exp (i(En − Eo)t). (35)

The transition probability from ground state to the nth state is

P0n(t) = ∣∣cn(t)
∣∣2 ≈

∣∣Sz
n0

∣∣2

h̄2 |h(En − E0)|2, (36)

where we have

H ′(t) = h(t)
∑

i

σ i
z = h(t)Sz, (37)

h(ω′) =
∫ ∞

−∞
h(t) exp(iω′t)dt. (38)

This is Fermi’s golden rule, that the system only absorbs per-
turbations at frequencies that match the excitations energies.
Data shown for both the exponential form and the harmonic
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FIG. 15. (Color online) Dynamics of the concurrences C(1,5) [red (upper) line] and C(1,7) [blue (lower) line] in applied cosine magnetic
fields of various frequencies and field strength, ω = 0.1 and a = 1 and ω = 0.5 and a = 1, where time t is in units of J−1.
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FIG. 16. (Color online) Dynamics of the concurrences C(1,2) [red (upper) line] and C(1,4) [blue (lower) line] in applied sinusoidal
magnetic fields (φ = π/4) of various frequencies and field strength, ω = 0.1 and a = 1, ω = 0.5 and a = 1, and ω = 0.5 and a = 5, where
time t is in units of J −1.

form of the external field can be explained using this principle.
For example, if one has

h(t) =
{

1 t � 0
1 − e−ωt t > 0 , (39)

Fourier transform gives

|h(ω′)|2 = 1

(ω′2 + ω2)
. (40)

The transition probability is

P0n ≈
∣∣Sz

n0

∣∣2

h̄2

1

(ω′2 + ω2)
. (41)

From this formula we can see that if one has ω � E1 − E0, the
transition rate is very small, and the system is able to follow
the change of the magnetic field.

The validity of the adiabatic approximation may fail in two
cases. First, when the external field is changing too quickly
for the system to follow, say, ω � En − E0 for certain n, the
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FIG. 17. (Color online) The time evolution of the concurrence C(1,4) as a function of the temperature kT under an applied step magnetic
field (a) a = 1, b = 2 and (b) a = 2, b = 3, where time t is in units of J−1 and kT is in units of J .
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FIG. 18. (Color online) The time evolution of the concurrence C(1,4) as a function of the temperature kT , (a) kT from 0 to 0.03 and (b)
kT from 0.1 to 2, under an applied exponential magnetic field, where time t is in units of J−1 and kT is in units of J .

system has a significant probability of being excited to the nth
state, thus losing the ground-state entanglement. One can see
this type of breaking for the exponential (hyperbolic) form of
the external field with large ω and for a step function (which
corresponds to ω → ∞ of the exponential form) and for the
case of harmonic field with high frequency. The second type
of adiabatic approximation breaking takes place if the strength
of the external field is too strong, so that during its change, the
system has to cross its phase boundary. Suppose the system
is able to follow the field and stays on the ground state up to
the critical field, then right at the transition the gap between
the ground state and a one-particle excitation continuum is
closing; therefore an arbitrarily slow field can significantly
send the system to various excited states. Although this picture
is, in principle, more relevant in the thermodynamic limit than
for the small-sized system in the current study, this type of
adiabatic breaking is still observed in Figs. 12(d) and 14(a).

VI. EXTENSION OF PROJECTION METHOD
TO LARGER SYSTEMS

At the end of Sec. II D, we mentioned that the summation of
Eq. (19) covers all the eigenstates. For large systems, such as
a 19-site system, this step is not realistic. Now if we consider
a system at zero temperature and at t = 0, one starts to change
the field. One can prove that not all excited states need to
be included in the projection because most excited states
have zero overlap with the ground state by symmetry. The

global symmetries of the system are spatial sixfold rotation
C6, spin-flip operation Z2, and spatial reflection about the
x axis mx and the y axis my . Group theory tells us that
the Hamiltonian can be block diagonalized and that each
block corresponds to an irreducible representation of the
symmetry group. If the ground state lies in the ith block, then
since the time-evolution operator U (t) = T exp[−i

∫ t

0 H (t)dt]
commutes with all symmetry operators, the end state |ψ(t)〉
still lies in the same irreducible representation. Let us illustrate
this idea by considering a simpler symmetry group constituted
by only C6 and Z2; then the group has 12 one-dimensional
irreducible representations. Each representation corresponds
to the eigenvalues of the two operators: [(−1)m, exp(i nπ

3 )],
where m = 1,2 and n = 1,2, . . . ,6. Suppose |ψ0〉 belongs to
the sector denoted by (m,n) and |φm′n′(t)〉 is an eigenstate of
H (t) in the (m′,n′) sector. Then we have

[C6,U (t)] = 0, (42)

〈φm′n′(t)|[C6,U (t)]|ψ(0)〉
= (eim′π/3 − eimπ/3)〈φm′n′ |ψ(t)〉 = 0. (43)

Therefore the overlap is nonzero only if m′ = m. Similarly, we
can prove n′ = n. The simplified symmetry group can divide
the original Hilbert space (unequally) into 12 parts, and the
dynamics is fully captured in only one of them; the additional
mx,y symmetries can help further reduce the number of states
one needs to consider for the zero-temperature dynamics.
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FIG. 19. (Color online) The time evolution of the concurrence C(1,4) as a function of the temperature kT , (a) kT from 0 to 0.03 and (b)
kT from 0.1 to 2, under an applied hyperbolic magnetic field, where time t is in units of J−1 and kT is in units of J .
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FIG. 20. (Color online) Concurrence C(1,4) vs temperature at
certain constant magnetic field strength a, where a varies from 0.1 to
15 in units of J .

Although symmetry has helped to largely reduce the
calculation cost, the remaining problem may still be too
extensive to solve. It is reasonable to apply an approximation:
only states that have energies that are not much higher than
the ground state are included in the projection if the external
field does not vary too quickly. Consider the case when the
field changes very slowly; hence the adiabatic approximation
is valid, and one needs to include only the ground state in
the calculation. Further, if the field changes faster than the
excitation gap but not as fast as ranging the whole excitation
spectrum, it would be enough if one only includes the first few
excited states (possibly the first band of excitations) to cover
the most important time scales.

VII. CONCLUSION AND FUTURE DIRECTIONS

We have investigated the dynamics of entanglement in a
two-dimensional triangular Ising spin lattice in an external
time-dependent magnetic field. The spins are coupled to each
other through nearest-neighbor exchange interaction. We stud-
ied nearest-neighbor and next-nearest-neighbor concurrences
of the system under different time-dependent forms of the
external magnetic field: step, exponential, hyperbolic, and
periodic. In contrast to the one-dimensional Ising spin system,
the two-dimensional system shows an ergodic behavior under

the effects of the time-dependent magnetic fields. The step
magnetic field causes a great disturbance to the system and
leads to a rapidly oscillating concurrence with amplitude and
frequency that depend on the magnetic field step values.
The system shows more controllability under the effects of
the other forms of magnetic fields where the concurrence
profile follows the shape of the applied magnetic field very
closely, particularly for a small magnetic field strength and a
small transition constant for the exponential and hyperbolic
fields and frequency for the periodic field. As the values of
these parameters increase, the concurrence breaks the pattern,
and rapid oscillations take place. The initial value of the
applied periodic field, independent of the amplitude, is very
critical to the oscillating concurrence profile, and a smaller
initial value yields a less distorted oscillation. Studying the
entanglement at zero and finite temperature revealed that it
sustains the same profile under the different magnetic fields
as the temperature increases but with reduced magnitude.
The effect of the temperature is very devastating to the
entanglement of the system, which decays rapidly as the
temperature increases. Interestingly, though a large value of
the magnetic field strength leads to a small concurrence,
it is found to be more robust against thermal fluctuations
than the smaller field strength. In the future, we would
like to study a larger-size two-dimensional spin lattice to
examine the effect of the size on the different properties
of the system [36]. Also we would like to study a more
generalized spin system where the coupling among the spins
in the other directions, rather than the z direction, is taken into
account along with the effect of a time-dependent exchange
coupling.

Furthermore the dynamics of a real system is determined
not only by its internal Hamiltonian but also by its envi-
ronment. The rich and varied physics of spin systems make
spin baths fundamentally interesting [37]. We plan to study
the reduced dynamics of the center spin with the rest as the
environment and also entanglements and decoherence for a
reduced system with two interacting spins with the rest as the
environment in the 7- and 19-site spin systems.
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