1,055 research outputs found

    Germinal Center B Cell-Like (GCB) and Activated B Cell-Like (ABC) Type of Diffuse Large B Cell Lymphoma (DLBCL): Analysis of Molecular Predictors, Signatures, Cell Cycle State and Patient Survival

    Get PDF
    Aiming to find key genes and events, we analyze a large data set on diffuse large B-cell lymphoma (DLBCL) gene-expression (248 patients, 12196 spots). Applying the loess normalization method on these raw data yields improved survival predictions, in particular for the clinical important group of patients with medium survival time. Furthermore, we identify a simplified prognosis predictor, which stratifies different risk groups similarly well as complex signatures

    Delineation of Chondroid Lipoma: An Immunohistochemical and Molecular Biological Analysis

    Get PDF
    Aims. Chondroid lipoma (CL) is a benign tumor that mimics a variety of soft tissue tumors and is characterized by translocation t(11;16). Here, we analyze CL and its histological mimics. Methods. CL (n = 4) was compared to a variety of histological mimics (n = 83) for morphological aspects and immunohistochemical features including cyclinD1(CCND1). Using FISH analysis, CCND1 and FUS were investigated as potential translocation partners. Results. All CLs were strongly positive for CCND1. One of 4 myoepitheliomas, CCND1, was positive. In well-differentiated lipomatous tumors and in chondrosarcomas, CCND1 was frequently expressed, but all myxoid liposarcomas were negative. FISH analysis did not give support for direct involvement of CCND1 and FUS as translocation partners. Conclusions. Chondroid lipoma is extremely rare and has several and more prevalent histological mimics. The differential diagnosis of chondroid lipomas can be unraveled using immunohistochemical and molecular support

    Gene expression and splicing alterations analyzed by high throughput RNA sequencing of chronic lymphocytic leukemia specimens.

    Get PDF
    BackgroundTo determine differentially expressed and spliced RNA transcripts in chronic lymphocytic leukemia specimens a high throughput RNA-sequencing (HTS RNA-seq) analysis was performed.MethodsTen CLL specimens and five normal peripheral blood CD19+ B cells were analyzed by HTS RNA-seq. The library preparation was performed with Illumina TrueSeq RNA kit and analyzed by Illumina HiSeq 2000 sequencing system.ResultsAn average of 48.5 million reads for B cells, and 50.6 million reads for CLL specimens were obtained with 10396 and 10448 assembled transcripts for normal B cells and primary CLL specimens respectively. With the Cuffdiff analysis, 2091 differentially expressed genes (DEG) between B cells and CLL specimens based on FPKM (fragments per kilobase of transcript per million reads and false discovery rate, FDR q < 0.05, fold change >2) were identified. Expression of selected DEGs (n = 32) with up regulated and down regulated expression in CLL from RNA-seq data were also analyzed by qRT-PCR in a test cohort of CLL specimens. Even though there was a variation in fold expression of DEG genes between RNA-seq and qRT-PCR; more than 90 % of analyzed genes were validated by qRT-PCR analysis. Analysis of RNA-seq data for splicing alterations in CLL and B cells was performed by Multivariate Analysis of Transcript Splicing (MATS analysis). Skipped exon was the most frequent splicing alteration in CLL specimens with 128 significant events (P-value <0.05, minimum inclusion level difference >0.1).ConclusionThe RNA-seq analysis of CLL specimens identifies novel DEG and alternatively spliced genes that are potential prognostic markers and therapeutic targets. High level of validation by qRT-PCR for a number of DEG genes supports the accuracy of this analysis. Global comparison of transcriptomes of B cells, IGVH non-mutated CLL (U-CLL) and mutated CLL specimens (M-CLL) with multidimensional scaling analysis was able to segregate CLL and B cell transcriptomes but the M-CLL and U-CLL transcriptomes were indistinguishable. The analysis of HTS RNA-seq data to identify alternative splicing events and other genetic abnormalities specific to CLL is an added advantage of RNA-seq that is not feasible with other genome wide analysis

    In vivo molecular imaging of chemokine receptor CXCR4 expression in patients with advanced multiple myeloma

    Get PDF
    CXCR4 is a G-protein-coupled receptor that mediates recruitment of blood cells toward its ligand SDF-1. In cancer, high CXCR4 expression is frequently associated with tumor dissemination and poor prognosis. We evaluated the novel CXCR4 probe [(68)Ga]Pentixafor for in vivo mapping of CXCR4 expression density in mice xenografted with human CXCR4-positive MM cell lines and patients with advanced MM by means of positron emission tomography (PET). [(68)Ga]Pentixafor PET provided images with excellent specificity and contrast. In 10 of 14 patients with advanced MM [(68)Ga]Pentixafor PET/CT scans revealed MM manifestations, whereas only nine of 14 standard [(18)F]fluorodeoxyglucose PET/CT scans were rated visually positive. Assessment of blood counts and standard CD34(+) flow cytometry did not reveal significant blood count changes associated with tracer application. Based on these highly encouraging data on clinical PET imaging of CXCR4 expression in a cohort of MM patients, we conclude that [(68)Ga]Pentixafor PET opens a broad field for clinical investigations on CXCR4 expression and for CXCR4-directed therapeutic approaches in MM and other diseases

    Thymic Hyperplasia with Lymphoepithelial Sialadenitis (LESA)-Like Features: Strong Association with Lymphomas and Non-Myasthenic Autoimmune Diseases.

    Get PDF
    Thymic hyperplasia (TH) with lymphoepithelial sialadenitis (LESA)-like features (LESA-like TH) has been described as a tumor-like, benign proliferation of thymic epithelial cells and lymphoid follicles. We aimed to determine the frequency of lymphoma and autoimmunity in LESA-like TH and performed retrospective analysis of cases with LESA-like TH and/or thymic MALT-lymphoma. Among 36 patients (21 males) with LESA-like TH (age 52 years, 32-80; lesion diameter 7.0 cm, 1-14.5; median, range), five (14%) showed associated lymphomas, including four (11%) thymic MALT lymphomas and one (3%) diffuse large B-cell lymphoma. One additional case showed a clonal B-cell-receptor rearrangement without evidence of lymphoma. Twelve (33%) patients (7 women) suffered from partially overlapping autoimmune diseases: systemic lupus erythematosus (n = 4, 11%), rheumatoid arthritis (n = 3, 8%), myasthenia gravis (n = 2, 6%), asthma (n = 2, 6%), scleroderma, Sjögren syndrome, pure red cell aplasia, Grave's disease and anti-IgLON5 syndrome (each n = 1, 3%). Among 11 primary thymic MALT lymphomas, remnants of LESA-like TH were found in two cases (18%). In summary, LESA-like TH shows a striking association with autoimmunity and predisposes to lymphomas. Thus, a hematologic and rheumatologic workup should become standard in patients diagnosed with LESA-like TH. Radiologists and clinicians should be aware of LESA-like TH as a differential diagnosis for mediastinal mass lesions in patients with autoimmune diseases

    Expression of Foxp3 in colorectal cancer but not in Treg cells correlates with disease progression in patients with colorectal cancer

    Get PDF
    Background: Regulatory T cells (Treg) expressing the transcription factor forkhead-box protein P3 (Foxp3) have been identified to counteract anti-tumor immune responses during tumor progression. Besides, Foxp3 presentation by cancer cells itself may also allow them to evade from effector T-cell responses, resulting in a survival benefit of the tumor. For colorectal cancer (CRC) the clinical relevance of Foxp3 has not been evaluated in detail. Therefore the aim of this study was to study its impact in colorectal cancer (CRC). Methods and Findings: Gene and protein analysis of tumor tissues from patients with CRC was performed to quantify the expression of Foxp3 in tumor infiltrating Treg and colon cancer cells. The results were correlated with clinicopathological parameters and patients overall survival. Serial morphological analysis demonstrated Foxp3 to be expressed in cancer cells. High Foxp3 expression of the cancer cells was associated with poor prognosis compared to patients with low Foxp3 expression. In contrast, low and high Foxp3 level in tumor infiltrating Treg cells demonstrated no significant differences in overall patient survival. Conclusions: Our findings strongly suggest that Foxp3 expression mediated by cancer cells rather than by Treg cells contribute to disease progression

    Peroxisome Proliferator Activated Receptor Gamma Controls Mature Brown Adipocyte Inducibility through Glycerol Kinase.

    Get PDF
    Peroxisome proliferator-activated receptors (PPARs) have been suggested as the master regulators of adipose tissue formation. However, their role in regulating brown fat functionality has not been resolved. To address this question, we generated mice with inducible brown fat-specific deletions of PPARα, β/δ, and γ, respectively. We found that both PPARα and β/δδ are dispensable for brown fat function. In contrast, we could show that ablation of PPARγ in vitro and in vivo led to a reduced thermogenic capacity accompanied by a loss of inducibility by β-adrenergic signaling, as well as a shift from oxidative fatty acid metabolism to glucose utilization. We identified glycerol kinase (Gyk) as a partial mediator of PPARγ function and could show that Gyk expression correlates with brown fat thermogenic capacity in human brown fat biopsies. Thus, Gyk might constitute the link between PPARγ-mediated regulation of brown fat function and activation by β-adrenergic signaling

    The Translation Factor eIF6 Is a Notch-Dependent Regulator of Cell Migration and Invasion

    Get PDF
    A growing body of evidence indicates that protein factors controlling translation play an important role in tumorigenesis. The protein known as eIF6 is a ribosome anti-association factor that has been implicated in translational initiation and in ribosome synthesis. Over-expression of eIF6 is observed in many natural tumours, and causes developmental and differentiation defects in certain animal models. Here we show that the transcription of the gene encoding eIF6 is modulated by the receptor Notch-1, a protein involved in embryonic development and cell differentiation, as well as in many neoplasms. Inhibition of Notch-1 signalling by γ-secretase inhibitors slowed down cell-cycle progression and reduced the amount of eIF6 in lymphoblastoid and ovarian cancer cell lines. Cultured ovarian cancer cell lines engineered to stably over-expressing eIF6 did not show significant changes in proliferation rate, but displayed an enhanced motility and invasive capacity. Inhibition of Notch-1 signalling in the cells over-expressing eIF6 was effective in slowing down the cell cycle, but did not reduce cell migration and invasion. On the whole, the results suggest that eIF6 is one of the downstream effectors of Notch-1 in the pathway that controls cell motility and invasiveness

    Viral transduction of primary human lymphoma B cells reveals mechanisms of NOTCH-mediated immune escape

    Full text link
    Hotspot mutations in the PEST-domain of NOTCH1 and NOTCH2 are recurrently identified in B cell malignancies. To address how NOTCH-mutations contribute to a dismal prognosis, we have generated isogenic primary human tumor cells from patients with Chronic Lymphocytic Leukemia (CLL) and Mantle Cell Lymphoma (MCL), differing only in their expression of the intracellular domain (ICD) of NOTCH1 or NOTCH2. Our data demonstrate that both NOTCH-paralogs facilitate immune-escape of malignant B cells by up-regulating PD-L1, partly dependent on autocrine interferon-? signaling. In addition, NOTCH-activation causes silencing of the entire HLA-class II locus via epigenetic regulation of the transcriptional co-activator CIITA. Notably, while NOTCH1 and NOTCH2 govern similar transcriptional programs, disease-specific differences in their expression levels can favor paralog-specific selection. Importantly, NOTCH-ICD also strongly down-regulates the expression of CD19, possibly limiting the effectiveness of immune-therapies. These NOTCH-mediated immune escape mechanisms are associated with the expansion of exhausted CD8+ T cells in vivo.© 2022. The Author(s)
    corecore