292 research outputs found

    Pencarian Jalur Terpendek untuk Robot Micromouse dengan Menggunakan Algoritma Backtracking

    Get PDF
    Robot Micromouse adalah robot cerdas yang dapat bergerak bebas di dalam sebuah labirin (maze) tanpa menyentuh objek sekitarnya, robot mengetahui ke arah mana harus bergerak, berapa derajat harus berputar jika menemui jalan buntu pada area labirin. Robot micromouse ini termasuk kedalam jenis Robot Mobile yaitu Autonomous Mobile Robot dimana pengendalian gerakan dari robot yang berdasarkan program kemudi yang diberikan sehingga seolah -olah robot tersebut bergerak sendiri. Arah pergerakan mobile robot ini ditentukan ketika ada respon terhadap obyek di depan, kanan dan kiri. Robot ini dibuat dengan mikrokontroller ATMEGA 8535 sebagai pengendali, sensor inframerah GP2D12 untuk mendeteksi adanya tembok atau tidak adanya tembok dan driver motor untuk menggerakkan motor sebagai aktuator. Robot ini menggunakan algoritma backtracking untuk mencari jalan terpendek dalam sebuah labirin ke tempat yang dituju

    Hubungan antara Perilaku Sanitasi Lingkungan dengan Kejadian Demam Berdarah Dengue (DBD) di Wilayah Kerja Puskesmas Tarus

    Get PDF
    DHF is one of the widespread  infectious diseases in Indonesia, with an increased infected number of sufferers. DHF case is closely related to environmental sanitation, wich causes the availability of breeding places for the Aedes aegypti mosquito vectors. The study was to determine the relationship between environmental sanitation behavior and the case of DHF in the working area of the Tarus Community Health Center in 2020. The study design was descriptive-analytical with a cross-sectional study approach. The sample was_99 respondents taken by simple random sampling technique. Data was collected from interviews and analyzed using the Chi-square test. The results showed that the varuabels of  knowledge (p = 0.000), attitudes (p = 0.021), and actions to environmental sanitation (p = 0.000) were related to the DHF case. The Tarus Community Health Center should increase outreach activities and family empowerment efforts related to the prevention and control of DHF

    Multiple Roles of Transforming Growth Factor Beta in Amyotrophic Lateral Sclerosis

    Get PDF
    Transforming growth factor beta (TGFB) is a pleiotropic cytokine, known to be dysregulated in many neurodegenerative disorders and particularly in amyotrophic lateral sclerosis (ALS). This motor neuronal disease is non-cell autonomous, as it affects not only motor neurons, but also their surrounding glial cells, and their target skeletal muscle fibers. Here, we analyze the multiple roles of TGFB in these cell types, and how TGFB signaling is altered in ALS tissues. Data reported support a crucial involvement of TGFB in the etiology and progression of ALS, leading us to hypothesize that an imbalance of TGFB signaling, diminished at the pre-symptomatic stage and then increased with time, could be linked to ALS progression. A reduced stimulation of the TGFB pathway at the beginning of disease blocks its neuroprotective effects and promotes glutamate excitotoxicity. At later disease stages, the persistent activation of the TGFB pathway promotes an excessive microglial activation and strengthens muscular dysfunction. The therapeutic potential of TGFB is discussed here, in order to foster new approaches to treat ALS

    Mapping Asbestos-Cement Roofing with Hyperspectral Remote Sensing over a Large Mountain Region of the Italian Western Alps

    Get PDF
    The World Health Organization estimates that 100 thousand people in the world die every year from asbestos-related cancers and more than 300 thousand European citizens are expected to die from asbestos-related mesothelioma by 2030. Both the European and the Italian legislations have banned the manufacture, importation, processing and distribution in commerce of asbestos-containing products and have recommended action plans for the safe removal of asbestos from public and private buildings. This paper describes the quantitative mapping of asbestos-cement covers over a large mountainous region of Italian Western Alps using the Multispectral Infrared and Visible Imaging Spectrometer sensor. A very large data set made up of 61 airborne transect strips covering 3263 km2 were processed to support the identification of buildings with asbestos-cement roofing, promoted by the Valle d’Aosta Autonomous Region with the support of the Regional Environmental Protection Agency. Results showed an overall mapping accuracy of 80%, in terms of asbestos-cement surface detected. The influence of topography on the classification’s accuracy suggested that even in high relief landscapes, the spatial resolution of data is the major source of errors and the smaller asbestos-cement covers were not detected or misclassified

    Whole genome sequencing in ROHHAD trios proved inconclusive: what’s beyond?

    Get PDF
    Rapid-onset Obesity with Hypothalamic dysfunction, Hypoventilation and Autonomic Dysregulation (ROHHAD) is a rare, life-threatening, pediatric disorder of unknown etiology, whose diagnosis is made difficult by poor knowledge of clinical manifestation, and lack of any confirmatory tests. Children with ROHHAD usually present with rapid onset weight gain which may be followed, over months or years, by hypothalamic dysfunction, hypoventilation, autonomic dysfunction, including impaired bowel motility, and tumors of neural crest origin. Despite the lack of evidence of inheritance in ROHHAD, several studies have been conducted in recent years that have explored possible genetic origins, with unsuccessful results. In order to broaden the search for possible genetic risk factors, an attempt was made to analyse the non-coding variants in two trios (proband with parents), recruited in the Gaslini Children’s Hospital in Genoa (Italy). Both patients were females, with a typical history of ROHHAD. Gene variants (single nucleotide variants, short insertions/deletions, splice variants or in tandem expansion of homopolymeric tracts) or altered genomic regions (copy number variations or structural variants) shared between the two probands were searched. Currently, we have not found any potentially pathogenic changes, consistent with the ROHHAD clinical phenotype, and involving genes, regions or pathways shared between the two trios. To definitively rule out the genetic etiology, third-generation sequencing technologies (e.g., long-reads sequencing, optical mapping) should be applied, as well as other pathways, including those associated with immunological and autoimmune disorders, should be explored, making use not only of genomics but also of different -omic datasets

    The role of extracellular vesicles in the removal of aggregated TDP43 responsible for ALS/FTD diseases

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two related neurodegenerative diseases. ALS is caused by the death of both upper and lower motoneurons, while FTD is characterized predominantly by circumscribed atrophy of the frontal and temporal lobes. ALS and FTD overlap each other. This is demonstrated by the presence of cognitive and behavioral dysfunction in up to 50% of ALS patients and by the presence of frontotemporal atrophy in patients with ALS. Moreover, these diseases are both characterize by the presence of TAR DNA binding protein 43 (TDP43) inclusions in affected cells. These inclusions, observed in 97% of patients with ALS and 50% of patients with FTD, are composed by TDP43 and its C-terminal fragments of 35 kDa (TDP35) and 25 kDa (TDP25). These fragments are highly aggregation-prone and probably neurotoxic. Thus, their removal is protective for cells. The mechanism responsible for the clearance of aggregates and misfolded proteins is the intracellular protein quality control (PQC) system. It consists of molecular chaperones/co- chaperones and the degradative pathways. PQC controls the folding status of proteins and prevents the aggregation of misfolded proteins by refolding them or degrading. Recent data demonstrated that also extracellular secretory pathway, represented especially by exosomes (EXOs) and microvesicles (MVs), might be involved in the removal of misfolded proteins from affected cells. Thus, we evaluated the role of EXOs and MVs in the secretion of TDP43 and its C-terminal fragments, using neuronal cell models. We used ultracentrifugation, that allowed us to separate MVs from EXOs on the basis of their dimension. Then we analyzed them through i) Nanoparticle Tracking Analysis (NanoSight) to establish their number and sizes, and ii) western blot analysis, to characterize their protein content. Our preliminary results show that TDP43, TDP35 and TDP25 are all secreted, mainly by MVs. In particular, we found that MVs are enriched of insoluble forms of TDPs and also of superoxide dismutase 1 (SOD1), another ALS-related protein. Finally, both in EXOs and in MVs, we observed the presence of some important PQC-components, suggesting an interplay between the two pathways. GRANTS: Fondazione Cariplo, Italy (n. 2017_0747); Universit\ue0 degli Studi di Milano e piano di sviluppo UNIMI - linea B

    Autophagic and proteasomal mediated removal of mutant androgen receptor in muscle models of spinal and bulbar muscular atrophy

    Get PDF
    Spinal and bulbar muscular atrophy (SBMA) is an X-linked motoneuron disease (MND) caused by a mutant androgen receptor (AR) containing an elongated polyglutamine (polyQ) tract. ARpolyQ toxicity is triggered by androgenic AR ligands, which induce aberrant conformations (misfolding) of the ARpolyQ protein that aggregates. Misfolded proteins perturb the protein quality control (PQC) system leading to cell dysfunction and death. Spinal cord motoneurons, dorsal root ganglia neurons and skeletal muscle cells are affected by ARpolyQ toxicity. Here, we found that, in stabilized skeletal myoblasts (s-myoblasts), ARpolyQ formed testosterone-inducible aggregates resistant to NP-40 solubilization; these aggregates did not affect s-myoblasts survival or viability. Both wild type AR and ARpolyQ were processed via proteasome, but ARpolyQ triggered (and it was also cleared via) autophagy. ARpolyQ reduced two pro-autophagic proteins expression (BAG3 and VCP), leading to decreased autophagic response in ARpolyQ s-myoblasts. Overexpression of two components of the chaperone assisted selective autophagy (CASA) complex (BAG3 and HSPB8), enhanced ARpolyQ clearance, while the treatment with the mTOR independent autophagy activator trehalose induced complete ARpolyQ degradation. Thus, trehalose has beneficial effects in SBMA skeletal muscle models even when autophagy is impaired, possibly by stimulating CASA to assist the removal of ARpolyQ misfolded species/aggregates
    • …
    corecore