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Abstract

Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) is an efficient reaction linking an azido and an alkynyl group in the
presence of copper catalyst. Incorporation of a non-natural amino acid (NAA) containing either an azido or an alkynyl group
into a protein allows site-specific bioconjugation in mild conditions via CuAAC. Despite its great potential, bioconjugation of
an enzyme has been hampered by several issues including low yield, poor solubility of a ligand, and protein structural/
functional perturbation by CuAAC components. In the present study, we incorporated an alkyne-bearing NAA into an
enzyme, murine dihydrofolate reductase (mDHFR), in high cell density cultivation of Escherichia coli, and performed CuAAC
conjugation with fluorescent azide dyes to evaluate enzyme compatibility of various CuAAC conditions comprising
combination of commercially available Cu(I)-chelating ligands and reductants. The condensed culture improves the protein
yield 19-fold based on the same amount of non-natural amino acid, and the enzyme incubation under the optimized
reaction condition did not lead to any activity loss but allowed a fast and high-yield bioconjugation. Using the established
conditions, a biotin-azide spacer was efficiently conjugated to mDHFR with retained activity leading to the site-specific
immobilization of the biotin-conjugated mDHFR on a streptavidin-coated plate. These results demonstrate that the
combination of reactive non-natural amino acid incorporation and the optimized CuAAC can be used to bioconjugate
enzymes with retained enzymatic activity.
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Introduction

Enzymes play important roles in biocatalysis to produce value-

added compounds, as well as in the diagnostics and therapeutics to

improve human health. In order to further expand the utility of

enzymes, bioconjugation has been actively explored. The conju-

gation of polyethylene glycol (pegylation) to therapeutic enzymes

leads to prolonged circulation time in vivo [1]. The conjugation of

fluorescence dye facilitates the studies on protein trafficking inside

cells/tissues or protein structural changes [2–4]. The covalent

attachment of enzymes on solid surface (enzyme immobilization)

leads to an enhanced thermostability [5]. For these applications,

amino acids with reactive residues such as lysine and cysteine have

been common targets for bioconjugation [6,7]. However, the

bioconjugation to multiple lysine residues of an enzyme often leads

to heterogeneous mixtures of isomers, compromising the catalytic

properties probably due to modification of an active site. In order

to overcome this issue, the site-specific bioconjugation of an

enzyme has been investigated. Although cysteine can be used to

achieve site-specific bioconjugation in some cases, its application is

limited in cases where there is an additional free cysteine residue

or a disulfide bond(s) is critical for protein folding. In order to

achieve absolute site-specificity, we and several other groups

employed the bioconjugation strategy utilizing site-specific incor-

poration of a reactive non-natural amino acid (NAA) [8–11]. To

attain an efficient site-specific incorporation, an expression host is

equipped with an orthogonal pair of suppressor tRNA and

aminoacyl-tRNA synthetase that have been modified to be specific

for a NAA of interest but not to cross-talk with 20 natural amino

acids as well as endogenous sets of tRNA and tRNA synthetase

[12,13]. The orthogonal pair incorporates a NAA in response to

an expanded genetic code, usually stop codons or four-base codons

[14,15]. In particular, site-specific incorporation of a NAA is of

interest for protein bioconjugation, because it allows a flexible

selection of an incorporation site and subsequent chemo-selective

conjugation, affording a conjugate with high homogeneity and

minimal loss of native protein function.

In order to achieve the site-specific bioconjugation using a

NAA, bioorthogonal protein chemistry is also required. We chose

Cu(I)-catalyzed azide-alkyne cycloaddition (CuAAC) in this study,

since it is a high-yielding and reliable reaction forming a stable

triazole linkage between biologically inert azide and terminal

alkyne groups [16], and readily compatible with aqueous and mild

conditions beneficial for protein bioconjugation [17–19]. CuAAC
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has been embraced for numerous biomolecular conjugation

applications since its discovery in 2002 [20–23]. To employ

CuAAC, a NAA functionalized with an azide or an alkyne group is

incorporated into a target protein in a residue- or a site-specific

manner [11,24,25].

Efficient protein bioconjugation has been the primary goal for

optimizing CuAAC conditions generating varying compositions of

reaction components [26–31]. Although the retained stability of a

viral capsid protein and the fluorescence of superfolder fluorescent

protein after bioconjugation were investigated [11,28,32], only

limited investigations have been performed where the retention of

catalytic activity has been explicitly addressed. It was reported that

a lipase conjugated to nanoparticles via CuAAC exhibited

catalytic activity [33]. However, the extent of activity retention

upon the conjugation was not presented. Since CuAAC reaction

components or conditions may damage catalytic properties of

enzymes, the CuAAC conditions needed to achieve a high

bioconjugation yield may not be ideal for the bioconjugation of

enzymes, while retaining their activity. For instance, Candida

antarctica lipase B exhibited significant loss of activity when

incubated overnight with CuAAC reagents including CuSO4,

ascorbate, and bathophenanthroline ligand [34]. More recently,

when Escherichia coli dihydrofolate reductase with a site-specifically

incorporated tyrosine analog was subjected to direct protein-

protein conjugation through CuAAC, and the authors reported

complete loss of activity resulting from detrimental effects of the

Cu(I) complex [35]. Considering the great potential of CuAAC in

bioconjugation of enzymes and therapeutic proteins, it is timely

and important to establish whether CuAAC conditions can be

optimized to efficiently bioconjugate enzymes with retained

enzymatic activity.

As a model system to study site-specific bioconjugation of

enzymes via CuAAC, we chose murine dihydrofolate reductase

enzyme (mDHFR), an enzyme that converts dihydrofolate (DHF)

to tetrahydrofolate (THF). Here we first evaluated effects of

CuAAC reaction components on retention of the catalytic activity

as well as reaction efficiency in order to identify optimal CuAAC

reaction conditions for enzyme bioconjugation. Furthermore,

varying bioconjugation yields at different conjugation sites were

also investigated. Since not all residues of an enzyme are readily

accessible for bioconjugation, a choice of conjugation site is

important to achieve high bioconjugation yield. Based on the

solvent accessibility of amino acid residues in the mDHFR

calculated by the ASA-View program [36], two residues (one with

a high solvent accessibility and another with a low solvent

accessibility) were selected. Then, the conjugation yield at the two

sites was compared. Finally, with the optimized CuAAC condi-

tions and conjugation site, we investigated whether an enzyme can

be directly immobilized on the surface with preserved catalytic

activity. Directed immobilization of a protein is one important

topic in the fields of biosensing and biocatalysis, because it may

increase the biosensor’s sensitivity and biocatalyst’s stability

[37,38]. In order to mediate enzyme immobilization, a biotin/

streptavidin pair with strong affinity and high selectivity was

utilized. A biotin derivative containing an azide functional group

was site-specifically conjugated to the mDHFR and then subjected

to binding to a streptavidin-coated plate.

Results and Discussion

Incorporation of p-Ethynylphenylalanine into the mDHFR
To minimize structural perturbation upon incorporation of

hydrophobic phenylalanine analog, p-ethynylphenylalanine

(pEthF) (Figure 1A), the valine at the 43rd position was chosen

as a target because it is away from the active site (Figure 2), and

exhibits hydrophobic index similar to that of phenylalanine [39]

and substantial solvent accessibility (Figure S1A). Residues were

numbered based on the amino acid sequence of the mDHFR in

the Protein Data Bank (PDB ID: 3D80) [40]. We introduced an

amber codon at the 43rd position of the mDHFR to replace valine

with pEthF (mDHFR-43pEthF). Protein expression in a site-

specific incorporation system generally suffers from low protein

yield because an exogenous suppressor tRNA should compete with

endogenous release factor 1 for the recognition of an amber stop

codon [41], necessitating a large volume of culture to secure an

appreciable amount of a target protein. In addition, a high NAA

concentration, typically in mM range, is required to maximize the

fraction of a suppressor tRNA charged with a NAA [42,43], which

is expensive or commercially not available. To increase expression

yield of the mDHFR containing a site-specifically incorporated

pEthF with its minimal consumption, cells were harvested by

centrifugation before IPTG induction, and then resuspended with

M9 expression medium containing 3 mM pEthF, the volume of

which was 20-fold less than the original volume. Previously,

condensed E. coli cultures in the NAA incorporation system

employing an evolved pyrrolysyl-tRNA synthetase/tRNACUA pair

from Methanosarcina species significantly enhanced the expression

yield of proteins containing a NAA [44,45]. The methodology has

been found to be effective with the yeast phenylalanyl-tRNA

synthetase/suppressor tRNA machinery we used here. When the

culture volume was condensed by a factor of 20 but the pEthF

concentration was not changed, the amount of the mDHFR-

43pEthF obtained per milligram of pEthF (65.2 mg) was approx-

imately 19-fold higher than that in the uncondensed culture

(3.5 mg). These results successfully demonstrate that the produc-

tion of the mDHFR-pEthF in a condensed volume of cell culture

greatly minimizes the waste of a valuable NAA.

To verify the substitution of the 43rd valine by pEthF,

endoproteinase Lys-C digests of the mDHFR-43pEthF and the

wild-type mDHFR (mDHFR-WT) were analyzed by MALDI-

TOF. Peptide V43 (residue 33–46; YFQRMTTTSSVEGK)

derived from the mDHFR-WT, was detected with a monoisotopic

mass of 1634.9 Da, in accord with its theoretical mass (Figure 3A,

top). For the mDHFR-43pEthF, Peptide Z43 (residue 33–46;

YFQRMTTTSSAmEGK where Am indicates an amber codon)

was observed at 1706.8 Da, while no signal was found at 1634.9

Da (Figure 3A, bottom), strongly supporting the incorporation of

pEthF in response to the amber codon.

To validate orthogonal reactivity of the alkynyl group at the

para-position of pEthF, the mDHFR-43pEthF, along with the

mDHFR-WT as a control, was incubated with a fluorescent

probe, sulforhodamine-azide (Figure 1C), in the presence of

CuSO4, ascorbate, and TBTA. In-gel fluorescence analysis

showed that only the mDHFR-43pEthF was reactive toward the

azide group via CuAAC (Figure 3B).

Effect of CuAAC in TBTA/DMSO System on Enzymatic
Activity

The catalytic function of an enzyme is sensitive to the chemical

environment, and often severely hampered by suboptimal reaction

conditions. There are several reasons for such a loss of catalytic

activity. First, the addition of DMSO or SDS to solvate

hydrophobic surfaces and chelating ligands may lead to irrevers-

ible deformation of the three-dimensional structure [26,28,45].

Second, harmful byproducts formed from a reductant can

adversely modify proteins [28,46]. Finally, lack of CuAAC kinetic

studies when a protein serves as a reaction target obscures an

optimal reaction time that meets both maximum yield and
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minimal exposure to the abovementioned potential risk factors.

Therefore, to ensure enzyme-friendly applications of CuAAC,

proper choices of the chelating ligand, the reductant, and duration

of reaction should be addressed.

TBTA (Figure 1B) stabilizes Cu(I) ions which are susceptible to

disproportionation, and has been commonly used as an acceler-

ating ligand for CuAAC. However, due to its low water-solubility,

it tends to become precipitated in aqueous media in which most

protein conjugations are conducted. To increase TBTA solubility,

we incrementally added a polar organic solvent, DMSO, to the

CuAAC reaction mixture while holding all others fixed, and

explored its effect on reaction yield. A milky turbidity observed in

the CuAAC reaction mixture dropped in proportion to DMSO

concentration. In order to evaluate reaction efficiency, we

employed fluorogenic assay using azidocoumarin (Figure 1C)

which, initially non-fluorescent, becomes highly fluorescent upon

its conjugation to terminal alkyne through CuAAC, thereby

enabling spectroscopic tracking of the reaction progress [47].

Higher DMSO concentration allowed higher conjugation effi-

ciency, indicating that solubility of TBTA is important to a high-

Figure 1. Chemical structures. (A) p-ethynylphenylalanine, (B) Cu(I)-chelating ligands, and (C) azide-functionalized reagents.
doi:10.1371/journal.pone.0098403.g001

Figure 2. Locations of selected residues for pEthF incorporation in the three-dimensional structure of the mDHFR-WT. Valine at the
43rd position and phenylalanine at the 179th position are highlighted in red (left) and blue (right), respectively. The cofactor NADPH (magenta) and
the inhibitor (orange) are shown in stick representation (PDB ID: 3D80).
doi:10.1371/journal.pone.0098403.g002
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yielding CuAAC reaction (Figure 4A). DMSO-dependent labeling

efficiency was also evident by in-gel fluorescence assay (Figure 4B).

As quantified by fluorescence intensity, the CuAAC reaction in

30% (v/v) DMSO exhibited 13.6% stronger fluorescence than

that in 10% (v/v) DMSO.

It was previously reported that DMSO exerts inhibitory effects

on catalytic enzymes [48–50]. In particular, E. coli dihydrofolate

reductase lost 17% of its native enzymatic activity after incubation

in the CuAAC reaction buffer containing 20% (v/v) DMSO [51].

To investigate the effect of DMSO on enzymatic activity of the

mDHFR-43pEthF, we measured NADPH-dependent reduction of

DHF catalyzed by the mDHFR-43pEthF after 15 min incubation

with 30% (v/v) DMSO and 36-fold dilution with the assay buffer

(Figure 4C). The mDHFR-43pEthF exhibited 86.7% of its original

activity after incubation, indicating that 30% (v/v) DMSO

essential for maximum yield irreversibly impairs the enzymatic

activity and, therefore, the TBTA/DMSO system for CuAAC is

not compatible with the mDHFR.

Figure 3. Incorporation of pEthF into the 43rd position of the mDHFR and its orthogonal reactivity. (A) MALDI-TOF spectra of Lys-C-
digested fragments derived from the mDHFR-WT (top) and the mDHFR-pEthF (bottom). (B) SDS-PAGE of the mDHFR-pEthF (pEthF) and the mDHFR-
WT (WT) reacted with sulforhodamine-azide. The reaction was performed at 25uC by mixing the protein (30 mM) with the dye (60 mM), CuSO4 (1 mM),
TBTA (1 mM), and ascorbate (2 mM) in 20 mM phosphate (pH 8.0) plus 30% (v/v) DMSO. The gel was illuminated by the excitation light at 550 nm
(fluorescence panel), and then stained with Coomassie brilliant blue (Coomassie panel).
doi:10.1371/journal.pone.0098403.g003
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CuAAC with the Water-soluble Chelating Ligand, THPTA
To circumvent the use of DMSO, which is essential for TBTA-

mediated CuAAC but adversely affects the enzymatic activity, we

employed a water-soluble ligand, THPTA (Figure 1B) [52], and

tested its performance as a chelating ligand. At the same

concentration of 1 mM, the CuAAC labeling using THPTA in

an aqueous buffer was as efficient as the labeling using TBTA in

30% DMSO (Figure 5A). In contrast to the TBTA/DMSO

system, the catalytic activity of the mDHFR-43pEthF was

preserved after incubation with THPTA in DMSO-free reaction

buffer (Figure 5B). The same condition could be applied to the

other mDHFR mutant bearing a site-specifically incorporated

pEthF at the 179th position (mDHFR-179pEthF) without harming

its native activity (Figure 5C). These results indicate that THPTA

is a relevant substitute for TBTA as a chelating ligand for enzyme

bioconjugation via CuAAC.

Optimization of CuAAC with Various Reductants
We explored relative compatibility of various reductants in

terms of their effects on the reaction rate and enzymatic activity of

the mDHFR-43pEthF. We chose three reductants: tris (2-

carboxyethyl)phosphine (TCEP), a highly water-soluble and

relatively stable reductant [46]; ascorbate, a commonly used

reductant in CuAAC but known to produce unwanted byproducts

at certain conditions [53,54]; and dithiothreitol (DTT), a strong

reductant whose use in CuAAC was recently reported [55]. First,

we labeled the mDHFR-43pEthF with a fluorogenic probe,

azidocoumarin, using each reductant, and measured the time-

course evolution of fluorescence on a microwell plate (Figure 6A).

Ascorbate was shown to be the most powerful reductant,

completing the reaction within 15 min with the highest fluores-

cence at the plateau. The yield was substantially lower when

TCEP or DTT was used. Moreover, the time to completion was

prolonged to more than 2 h and 12 h, respectively. Even though

ascorbate seemed most effective in reaction kinetics, it does not

necessarily mean that it has the best compatibility. To assess an

adverse effect of CuAAC systems on enzymatic activity, the

mDHFR-43pEthF was incubated with each system, and then

subjected to the activity assay (Figure 6B). Incubation times were

set at 15 min, 2 h, and 12 h, i.e. time for reaction completion, for

ascorbate-, TCEP- and DTT-reducing system, respectively.

Considering large differences in the conjugation yield observed

among the reaction conditions, the mDHFR was incubated in the

absence of any dye. The relative reduction in activity was greatest

in DTT-reducing system, followed by TCEP- and ascorbate-

reducing system. Compared to the activity loss observed after

incubation with 30% DMSO, TCEP- and ascorbate-reducing

system showed significantly (P,0.05) lower reduction in activity.

Notably, the mDHFR-43pEthF treated with ascorbate did not

cause any significant reduction in activity compared to that of the

untreated control. These results suggest that short incubation with

the reductant is critical to minimize adverse effects on enzymatic

activity during CuAAC reaction, and ascorbate is the best

reductant for CuAAC with an enzyme because it rapidly

completes the reaction with high yield. Using the optimized

CuAAC condition, an azidocoumarin was conjugated to the

mDHFR-43pEthF and then the activity of the dye-conjugated

mDHFR-43pEthF was compared to that of the untreated

mDHFR-43pEthF (Figure 6C). As expected, the dye-conjugation

led to only a minor reduction in activity, which is likely due to the

slight structural perturbation resulting from the hydrophobic

nature of the dye conjugated.

Previously, complete loss of enzymatic activity was observed

upon bioconjugation of the E. coli DHFR variant in which the

Figure 4. Performance of TBTA-assisted CuAAC reactions
under various DMSO concentrations and their effects on the
enzymatic activity. (A) Kinetic traces detected at various DMSO
volume concentrations in the presence of TBTA or in a DMSO-free
buffer without TBTA. Reactions were initiated at 25uC by adding
ascorbate (2 mM) to a phosphate-buffered (pH 8.0) mixture containing
30 mM of the mDHFR-43pEthF, 60 mM of azidocoumarin, 1 mM of
CuSO4, 1 mM TBTA, and appropriate DMSO contents. Fluorescence
evolution was recorded at lex = 400 nm and lem = 470 nm. (B) In-gel
fluorescence of an equal amount of reaction products. Relative
intensities were quantified by densitometry. (C) Effect of DMSO
incubation on activity of the mDHFR-43pEthF. After incubation of
30 mM protein in 10 ml of DMSO-free (closed circle) or 30% (v/v) DMSO-
containing phosphate buffer (pH 8.0) (open circle) for 15 min at 25uC,
the mixture was diluted 36-fold with the assay buffer for activity assay
as described in Materials and Methods. Relative activity was calculated
based on changes in absorbance for 10 min after initiation of the
enzymatic reaction. Error bars represent standard errors (n = 3).
doi:10.1371/journal.pone.0098403.g004
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CuAAC reaction was initiated by adding a reactive Cu(I) complex,

and incubated overnight [35]. Our optimization study therefore

suggests a remedy to implement enzyme-compatible bioconjuga-

tion through in situ reduction of Cu(II) by an appropriate choice of

a reductant allowing minimum contact time between the enzyme

and reactive species while achieving maximum conjugation yield.

Although the CuAAC condition described here works well for the

mDHFR, it should, however, be applied to other enzymes with a

caution. Considering the physicochemical diversity of enzymes

and varying sensitivities to reaction components (such as strong

inhibition of formate dehydrogenase by copper ions), the CuAAC

conditions may need to be slightly adjusted for each enzyme. In

case of enzymes greatly inhibited by copper ions, copper-free

azide-alkyne cycloaddition can be employed. The construction of

multifunctional enzyme complex via copper-free azide-alkyne

cycloaddition was performed leading to varying retained activities

between 17 to 91% [56].

Comparison of Conjugation Yields at Different
Conjugation Sites

To compare the conjugation yield depending on the solvent

accessibility of a conjugation site, the phenylalanine at position

179 (F179) was also targeted for pEthF incorporation generating

the mDHFR-179pEthF (Figure 2 and Figure S1B). Contrary to

the solvent accessible valine at position 43 (accessibility score:

0.44), a phenyl ring of F179 is buried inside the protein and has a

very low solvent accessibility (accessibility score: 0.10). Under the

same condition used for the mDHFR-43pEthF, fluorescence

signals of the mDHFR-179pEthF were substantially lower than

those of the mDHFR-43pEthF (Figure 6A). These results strongly

indicate that the solvent accessibility of a conjugation site

correlates to the conjugation yield. When the crystal structure of

a target protein is available, the solvent accessibility prediction

tools including ASA-View program can be used to identify a

suitable conjugation site leading to a high conjugation yield.

Furthermore, in the absence of the protein crystal structure,

monitoring fluorogenic dye conjugation at each site is expected to

be used to estimate the solvent accessibility. It should be also noted

that the mDHFR-179pEthF had only 30% of original activity of

the mDHFR (data not shown). It is known that F179 stabilizes the

tertiary structure of the mDHFR by forming a parallel ring

stacking interaction with Y33 [57]. Its substitution by even a

structurally similar phenylalanine analog appears to adversely

impact the aromatic ring stacking, thereby resulting in distorted

conformation for ligand binding.

Immobilization of the mDHFR-43pEthF by Site-specific
Biotinylation

As a practical application of site-specific bioconjugation of an

enzyme, we investigated if the mDHFR can be immobilized onto a

streptavidin-coated plate through CuAAC-mediated biotinylation

without loss of activity. Biotin-PEG3-azide, a hybrid reagent

having a flexible and hydrophilic PEG spacer and a chemoselec-

tive azide group, was conjugated to the mDHFR-43pEthF in the

ascorbate-reducing system to yield the biotinylated mDHFR

(mDHFR-43biotin). Little change in enzymatic activity was

observed for the mDHFR-43biotin in comparison to the

mDHFR-43pEthF, suggesting that biotinylation as well as the

reaction system did not seriously interfere with the activity

(Figure 7A). Biotinylation was found to be high yielding as

revealed by the dye-conjugation analysis (Figure S2). The inertness

of the mDHFR-43biotin towards the CuAAC-driven dye labeling

indicated that most of the accessible pEthFs had been occupied by

the biotin. To implement enzyme immobilization through biotin-

streptavidin interaction, the streptavidin-coated plate was incu-

bated with the mDHFR-43biotin, in parallel with the mDHFR-

43pEthF as a control (Figure 7B). Positive enzymatic activity was

detected over course of time, but not in the control. To our

knowledge, this is the first example of enzyme immobilization

Figure 5. THPTA-assisted CuAAC reaction and its effect on the
enzymatic activity. (A) In-gel fluorescence of reaction products from
TBTA- and THPTA-assisted dye labeling via CuAAC. The mDHFR-pEthF
(30 mM) was reacted at 25uC for 15 min with sulforhodamine-azide
(60 mM) in the presence of 1 mM CuSO4, 1 mM TBTA, 2 mM ascorbate
in a phosphate buffer (pH 8.0) containing 30% (v/v) DMSO or in the
presence of 1 mM CuSO4, 1 mM THPTA, 2 mM ascorbate in a DMSO-
free phosphate buffer (pH 8.0). (B) Effect of THPTA incubation on
activity of the mDHFR-43pEthF. After incubation of 30 mM protein with
(open circle) or without (close circle) 1 mM THPTA in 10 ml of DMSO-
free phosphate buffer (pH 8.0) for 15 min at 25uC, the mixture was
diluted 36-fold with the assay buffer for activity assay. Error bars
represent standard errors (n = 3). (C) Effect of THPTA incubation on
activity of the mDHFR-179pEthF (n = 3).
doi:10.1371/journal.pone.0098403.g005
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through site-specific NAA incorporation and the CuAAC with

retained catalytic activity, and opens the possibility to fabricate

highly sensitive biosensors and biocatalysts attributed by controlled

orientation and homogeneous chemistry.

Conclusions

Site-specific bioconjugation of an enzyme was achieved by

introducing a NAA with an alkyne functional group into a specific

site followed by conjugation via CuAAC. The effects of CuAAC

conditions on catalytic activity were evaluated using the mDHFR

as a model enzyme. Under the optimized CuAAC condition

utilizing THPTA and ascorbate as a ligand and a reductant,

respectively, the fluorescence dye and biotin were efficiently

conjugated to the mDHFR in a site-specific manner with retention

of substantial catalytic activity. It was also found that the solvent

accessibility of a conjugation site correlates to a conjugation yield

indicating that the choice of conjugation site is critical to ensure

efficient bioconjugation. Furthermore, the site-specific biotinyla-

tion was successfully used to immobilize the mDHFR on a

streptavidin-coated plate through a highly specific and tight biotin-

streptavidin binding, which would enable a spatially controlled

and maximally functional enzyme immobilization.

Materials and Methods

Materials
p-Ethynylphenylalanine (pEthF) was synthesized as described

previously [58]. Ni-NTA agarose and pQE16 plasmid were

obtained from Qiagen (Valencia, CA). Endoproteinase Lys-C was

obtained from Promega Corporation (Madison, WI). Amicon ultra

centrifugal filters with a molecular weight cutoff of 10 kDa and

ZipTip with C18 media were purchased from Millipore Corpora-

tion (Billerica, MA). Sulforhodamine-azide and Biotin-PEG3-azide

were purchased from Bioconjugate Technology Company (Scotts-

Figure 6. Effect of various reductants on CuAAC reaction rates and activities of the mDHFR-43pEthF and the mDHFR-179pEthF. (A)
Time course of CuAAC reactions initiated by ascorbate, TCEP, and DTT. Reactions were performed at 25uC by adding 2 mM reductant to a phosphate-
buffered (pH 8.0) mixture containing 30 mM of the mDHFR-43pEthF (black) or the mDHFR-179pEthF (gray), 60 mM of azidocoumarin, 1 mM of CuSO4,
1 mM THPTA. Fluorescence evolution was recorded at lex = 400 nm and lem = 470 nm. (B) Relative loss of enzymatic activity after incubation with
various CuAAC systems in the absence of azidocoumarin (1–4). Incubation times were 15 min for system 1 and 4, 12 h for system 2, and 2 h for
system 3. Activity losses were normalized to that in system 1. Error bars represent standard errors (n = 3). Two-sided Student’s t-tests were applied to
the data (*P,0.05). (C) Effect of ascorbate-driven dye labeling of the mDHFR-43pEthF on the enzymatic activity. The labeling was performed at 25uC
for 15 min in the presence of 30 mM of the mDHFR-43pEthF, 60 mM of azidocoumarin, 1 mM of CuSO4, 1 mM THPTA, and 2 mM ascorbate. Error bars
represent standard errors (n = 3).
doi:10.1371/journal.pone.0098403.g006
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dale, AZ). Azidocoumarin was obtained from Glen Research

(Sterling, VA). Streptavidin Coated High Sensitivity Plate was

obtained from Thermo Scientific (Rockford, IL). All other

chemicals were purchased from Sigma-Aldrich Corporation (St.

Louis, MO).

Plasmid Construction and Strains
Preparation of the plasmids pQE16-yPheRST415A and pREP4-

ytRNAPhe
CUA_UG is described elsewhere [59]. pQE16am43-

yPheRST415A or pQE16am179-yPheRST415A encodes the yeast

phenylalanyl-tRNA synthetase variant and the murine dihydrofo-

late reductase (mDHFR) with an amber codon at the 43rd or

179th position and a C-terminal hexahistidine tag. An amber

codon was introduced by PCR mutagenesis replacing the 43rd

valine codon or the 179th phenylalanine codon. The mutagenic

primer sequences were as follows: V43 Forw, 59-CA-

CAACCTCTTCATAGGAAGGTAAACAG-39; V43 Rev, 59-

CTGTTTACCTTCCTATGAAGAGGTTGTG-39; F179 Forw,

59-CATCAAGTATAAGTAGGAAGTCTACGAG-39; F179

Rev, 59-CTCGTAGACTTCCTACTTATACTTGATG-39.

pREP4-ytRNAPhe
CUA_UG encodes the mutant yeast amber

suppressor tRNA engineered to have minimal cross-reactivity

with the E. coli aminoacyl-tRNA synthetases. A Phe/Trp/Lys

triple auxotrophic Escherichia coli strain, AFWK, was prepared as

described previously [59]. AFWK harboring both plasmids was

used as an expression host for site-specific incorporation of pEthF

into the amber codon.

Expression and Purification of Proteins
The wild-type mDHFR (mDHFR-WT) was expressed from E.

coli XL1-Blue harboring pQE16 by 1 mM IPTG induction in LB

media containing 100 mg/mL ampicillin at 37 uC. To express the

mDHFR mutant containing pEthF at the 43rd position (mDHFR-

43pEthF), AFWK harboring pQE16am43-yPheRST415A and

pREP4-ytRNAPhe
CUA_UG was used. Saturated overnight cultures

grown at 37 uC in M9 minimal medium supplemented with

100 mg/mL ampicillin, 30 mg/mL kanamycin, 0.4% (w/v) glu-

cose, 1 mM MgSO4, 0.1 mM CaCl2, 10 mg/mL thiamine, and 20

amino acids (25 mg/mL each) were diluted 20-fold in the same

fresh medium, and grown at 37 uC until an OD600 of 0.9 was

reached. After incubation on ice for 15 min, cells were sedimented

by centrifugation at 4000 g for 12 min, and washed with cold

0.9% (w/v) NaCl by gentle resuspension. After repeating twice,

cells were shifted to M9 medium supplemented with the same

ingredients described above except for different amino acid

compositions: 17 amino acids (35 mg/mL each), 150 mM Lys,

60 mM Phe, 20 mM Trp, and 3 mM pEthF. To maximize the

incorporation efficiency in condensed culture, the total volume of

M9 expression medium was 20-fold smaller than the original

volume. Upon induction by 1 mM IPTG, cells were incubated

with shaking at 30 uC for 15 h before harvest. Cells were pelleted

by centrifugation, and the protein was purified by gravity-flow

affinity chromatography using Ni-NTA agarose beads under

native condition according to the supplier’s instructions (Qiagen).

Purified proteins were directly used or buffer-exchanged using PD-

10 desalting columns to appropriate buffers. If necessary, the

protein solutions were concentrated using centrifugal filters. The

mDHFR mutant containing pEthF at the 179th position

(mDHFR-179pEthF) was obtained as described above except that

pQE16am179-yPheRST415A was used instead of pQE16am43-

yPheRST415A.

Mass Characterization by MALDI-TOF Mass Spectrometry
To the mDHFR-WT or the mDHFR-pEthF in 20 mM

potassium phosphate (pH 8.0) was added endoproteinase Lys-C

to a final protease:mDHFR ratio of 1:50 (w/w). Following

incubation at 37 uC overnight, the reaction mixture was mixed

with 0.5% (v/v) trifluoroacetic acid (TFA) to quench the reaction

and then desalted on a ZipTip C18, and then analyzed by

MALDI-TOF mass spectrometry (MS) to confirm site-specific

incorporation of pEthF into the desired position of the mDHFR.

The MS analysis was performed using 20 mg/mL of 2,5-

dihydroxybenzoic acid and 2 mg/mL of L-(2)-fucose dissolved

in 10% ethanol as a matrix by MicroflexTM MALDI-TOF MS

(Bruker Corporation, Billerica, MA).

Kinetic Studies
Stock solutions were prepared as follows: 80 mM mDHFR-

pEthF in 20 mM potassium phosphate (pH 8.0), 20 mM CuSO4

in DW, 20 mM tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine

(TBTA) in dimethyl sulfoxide (DMSO), 20 mM tris(3-hydroxy-

Figure 7. Enzymatic activity of the mDHFR after site-specific
biotinylation and immobilization. (A) Activity of the mDHFR-
43biotin versus the mDHFR-43pEthF. Error bars represent standard
errors (n = 3). (B) Activity of the immobilized mDHFR-43biotin.
Streptavidin-coated wells were incubated with 50 mL of the mDHFR-
43biotin and the mDHFR-43pEthF at 1 mg/mL, separately, for 30 min at
RT. After washing, the enzymatic reaction was initiated at 25uC by
adding 200 mL of assay buffer, and monitored by spectrometry. Error
bars represent standard errors (n = 3).
doi:10.1371/journal.pone.0098403.g007
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propyltriazolylmethyl)amine (THPTA) in DW, 1 mM azidocou-

marin in DMSO, and 40 mM reductant in DW. For CuAAC in

the TBTA/DMSO system, the mDHFR-pEthF at a final

concentration of 30 mM was mixed with an appropriate concen-

tration of DMSO, 1 mM CuSO4, 1 mM TBTA, 60 mM of

azidocoumarin, and 2 mM reductant in 70 mL reaction volume

(listed in the order of addition). For CuAAC in the THPTA

system, the mDHFR-pEthF at a final concentration of 30 mM was

mixed with 1 mM CuSO4, 1 mM THPTA, 60 mM of azidocou-

marin, and 2 mM reductant in 70 mL reaction volume. Evolution

of fluorescence was monitored at lex = 400 nm, lem = 470 nm in

standard 96-well plates on the SynergyTM four multimode

microplate reader (BioTek, Winooski, VT) at appropriate time

intervals at 25uC. To quench the reaction, 10 mM ethylenedi-

aminetetraacetic acid (EDTA) was added.

Enzymatic Activity Assay
To measure enzymatic activity of the mDHFR-pEthF, nicotin-

amide adenine dinucleotide phosphate (NADPH)-dependent

reduction of dihydrofolate (DHF) was monitored at A340 nm by

the SynergyTM four multimode microplate reader according to

the protocol provided by the dihydrofolate reductase assay kit

(Sigma) with slight modification as follows. The reaction was

initiated by mixing 100 mL of the assay buffer (50 mM 2-(N-

morpholino)ethanesulfonic acid (Mes), 25 mM tris(hydroxymethy-

l)aminomethane (Tris), 25 mM ethanolamine, and 100 mM

sodium chloride, pH 7.5, containing 120 mM NADPH and

100 mM DHF) with 100 mL of the assay buffer containing an

appropriate concentration of the mDHFR-pEthF. All measure-

ments were made in triplicate at 25uC. The change in absorbance

after 10 min was taken as a measure of catalytic activity.

Immobilization and Activity Assay of the Biotinylated
mDHFR

Biotinylation of the mDHFR-43pEthF was conducted for

20 min in the following condition: 50 mM mDHFR-43pEthF,

1 mM CuSO4, 1 mM THPTA, 150 mM of biotin-PEG3-azide,

and 2 mM ascorbate in 20 mM potassium phosphate (pH 8.0)/

0.1 M NaCl. After adding EDTA at a final concentration of

10 mM to quench the reaction, the reaction mixture was desalted

by a PD-10 column, and concentrated by ultrafiltration to 1 mg/

mL of the biotinylated mDHFR (mDHFR-43biotin). Fifty

microliter of the mDHFR-43biotin was added to each well in a

streptavidin-coated plate, and incubated at room temperature for

30 min. After washing three times with 200 mL of 20 mM

potassium phosphate (pH 8.0)/0.1 M NaCl/0.05% Tween 20,

150 mL of the assay buffer was added to each well. Absorbance at

340 nm was monitored at appropriate time points by the

microplate reader.

Supporting Information

Figure S1 Solvent accessibility of pEthF incorporation
sites, V43 (A) and F179 (B), and their neighboring
residues calculated by the ASA-View program. Relative

values of absolute surface area of each residue were derived from

the crystal structure of the mDHFR (PDB ID: 3D80).

(TIF)

Figure S2 Dye labeling of the mDHFR-43pEthF and the
mDHFR-43biotin through CuAAC. As a control, reactions

were also performed in the absence of copper ions. Protein

concentration was 30 mM. Reactions were stopped by 10 mM

EDTA at 15 min after initiation, and analyzed by SDS-PAGE.

The gel was illuminated by UV (365 nm) to excite the fluorophore

(Fluorescence panel), and then stained with Coomassie Brilliant

Blue (Coomassie panel) to visualize proteins.

(TIF)
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