10,532 research outputs found

    Quantum interference from remotely trapped ions

    Full text link
    We observe quantum interference of photons emitted by two continuously laser-excited single ions, independently trapped in distinct vacuum vessels. High contrast two-photon interference is observed in two experiments with different ion species, calcium and barium. Our experimental findings are quantitatively reproduced by Bloch equation calculations. In particular, we show that the coherence of the individual resonance fluorescence light field is determined from the observed interference

    A note on the integrability of non-Hermitian extensions of Calogero-Moser-Sutherland models

    Get PDF
    We consider non-Hermitian but PT-symmetric extensions of Calogero models, which have been proposed by Basu-Mallick and Kundu for two types of Lie algebras. We address the question of whether these extensions are meaningful for all remaining Lie algebras (Coxeter groups) and if in addition one may extend the models beyond the rational case to trigonometric, hyperbolic and elliptic models. We find that all these new models remain integrable, albeit for the non-rational potentials one requires additional terms in the extension in order to compensate for the breaking of integrability.Comment: 10 pages, Late

    Ab initio lattice dynamics simulations and inelastic neutron scattering spectra for studying phonons in BaFe2As2: Effect of structural phase transition, structural relaxation and magnetic ordering

    Get PDF
    We have performed extensive ab initio calculations to investigate phonon dynamics and their possible role in superconductivity in BaFe2As2 and related systems. The calculations are compared to inelastic neutron scattering data that offer improved resolution over published data [Mittal et al., PRB 78 104514 (2008)], in particular at low frequencies. Effects of structural phase transition and full/partial structural relaxation, with and without magnetic ordering, on the calculated vibrational density of states are reported. Phonons are best reproduced using either the relaxed magnetic structures or the experimental cell. Several phonon branches are affected by the subtle structural changes associated with the transition from the tetragonal to the orthorhombic phase. Effects of phonon induced distortions on the electronic and spin structure have been investigated. It is found that for some vibrational modes, there is a significant change of the electronic distribution and spin populations around the Fermi level. A peak at 20 meV in the experimental data falls into the pseudo-gap region of the calculation. This was also the case reported in our recent work combined with an empirical parametric calculation [Mittal et al., PRB 78 104514 (2008)]. The combined evidence for the coupling of electronic and spin degrees of freedom with phonons is relevant to the current interest in superconductivity in BaFe2As2 and related systems

    Magneto-structural coupling and harmonic lattice dynamics in CaFe2_2As2_2 probed by M\"ossbauer spectroscopy

    Full text link
    In this paper we present detailed M\"ossbauer spectroscopy study of structural and magnetic properties of the undoped parent compound CaFe2_2As2_2 single crystal. By fitting the temperature dependence of the hyperfine magnetic field we show that the magneto-structural phase transition is clearly first-order in nature and we also deduced the compressibility of our sample to be 1.67×102GPa11.67\times10^{-2}\,GPa^{-1}. Within the Landau's theory of phase transition, we further argue that the observed phase transition may stem from the strong magneto-structural coupling effect. Temperature dependence of the Lamb-M\"ossbauer factor show that the paramagnetic phase and the antiferromagnetic phase exhibit similar lattice dynamics in high frequency modes with very close Debye temperatures, ΘD\Theta_D \sim270\,K.Comment: 6 pages,5 figures Accepted by J. Phys.: Condens. Matte

    Effectiveness of alcohol-based hand hygiene gels in reducing nosocomial infection rates

    Get PDF

    Evidence for Unconventional Superconductivity in Arsenic-Free Iron-Based Superconductor FeSe : A ^77Se-NMR Study

    Full text link
    We report the results of 77^{77}Se--nuclear magnetic resonance (NMR) in α\alpha-FeSe, which exhibits a similar crystal structure to the LaFeAsO1x_{1-x}Fx_x superconductor and shows superconductivity at 8 K. The nuclear-spin lattice relaxation rate 1/T11/T_1 shows T3T^3 behavior below the superconducting transition temperature TcT_c without a coherence peak. The T1T=T_1T= const. behavior, indicative of the Fermi liquid state, can be seen in a wide temperature range above TcT_c. The superconductivity in α\alpha-FeSe is also an unconventional one as well as LaFeAsO1x_{1-x}Fx_x and related materials. The FeAs layer is not essential for the occurrence of the unconventional superconductivity.Comment: 4pages, 4figures, to be published in J. Phys. Soc. Jpn. 77 No.11 (2008

    Antiferromagnetism of SrFe2As2 studied by Single-Crystal 75As-NMR

    Full text link
    We report results of 75As nuclear magnetic resonance (NMR) experiments on a self-flux grown high-quality single crystal of SrFe2As2. The NMR spectra clearly show sharp first-order antiferromagnetic (AF) and structural transitions occurring simultaneously. The behavior in the vicinity of the transition is compared with our previous study on BaFe2As2. No significant difference was observed in the temperature dependence of the static quantities such as the AF splitting and electric quadrupole splitting. However, the results of the NMR relaxation rate revealed difference in the dynamical spin fluctuations. The stripe-type AF fluctuations in the paramagnetic state appear to be more anisotropic in BaFe2As2 than in SrFe2As2.Comment: 4 pages, 5 figures; discussion revised; accepted for publication in J. Phys. Soc. Jp

    Pump-induced Exceptional Points in Lasers

    Full text link
    We demonstrate that the above-threshold behavior of a laser can be strongly affected by exceptional points which are induced by pumping the laser nonuniformly. At these singularities, the eigenstates of the non-Hermitian operator which describes the lasing modes coalesce. In their vicinity, the laser may turn off even when the overall pump power deposited in the system is increased. Such signatures of a pump- induced exceptional point can be experimentally probed with coupled ridge or microdisk lasers.Comment: 4.5 pages, 4 figures, final version including additional FDTD dat
    corecore