24 research outputs found

    Modulation of the liver protein carbonylome by the combined effect of marine Omega-3 PUFAs and grape polyphenols supplementation in rats fed an obesogenic high fat and high sucrose diet

    Get PDF
    Diet-induced obesity has been linked to metabolic disorders such as cardiovascular diseases and type 2 diabetes. A factor linking diet to metabolic disorders is oxidative stress, which can damage biomolecules, especially proteins. The present study was designed to investigate the effect of marine omega-3 polyunsaturated fatty acids (PUFAs) (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) and their combination with grape seed polyphenols (GSE) on carbonyl-modified proteins from plasma and liver in Wistar Kyoto rats fed an obesogenic diet, namely high-fat and high-sucrose (HFHS) diet. A proteomics approach consisting of fluorescein 5-thiosemicarbazide (FTSC) labelling of protein carbonyls, visualization of FTSC-labelled protein on 1-DE or 2-DE gels, and protein identification by MS/MS was used for the protein oxidation assessment. Results showed the effciency of the combination of both bioactive compounds in decreasing the total protein carbonylation induced by HFHS diet in both plasma and liver. The analysis of carbonylated protein targets, also referred to as the 'carbonylome', revealed an individual response of liver proteins to supplements and a modulatory effect on specific metabolic pathways and processes due to, at least in part, the control exerted by the supplements on the liver protein carbonylome. This investigation highlights the additive effect of dietary fish oils and grape seed polyphenols in modulating in vivo oxidative damage of proteins induced by the consumption of HFHS diets

    Targeting hepatic protein carbonylation and oxidative stress occurring on diet-induced metabolic diseases through the supplementation with fish oils

    Get PDF
    The present study addressed the ability of long-chain ω-3 polyunsaturated fatty acids (ω-3 PUFA), i.e., eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), to ameliorate liver protein damage derived from oxidative stress and induced by consumption of high-caloric diets, typical of Westernized countries. The experimental design included an animal model of Sprague-Dawley rats fed high-fat high-sucrose (HFHS) diet supplemented with ω-3 EPA and DHA for a complete hepatic proteome analysis to map carbonylated proteins involved in specific metabolic pathways. Results showed that the intake of marine ω-3 PUFA through diet significantly decreased liver protein carbonylation caused by long-term HFHS consumption and increased antioxidant system. Fish oil modulated the carbonylation level of more than twenty liver proteins involved in critical metabolic pathways, including lipid metabolism (e.g., albumin), carbohydrate metabolism (e.g., pyruvate carboxylase), detoxification process (e.g., aldehyde dehydrogenase 2), urea cycle (e.g., carbamoyl-phosphate synthase), cytoskeleton dynamics (e.g., actin), or response to oxidative stress (e.g., catalase) among others, which might be under the control of diet marine ω-3 PUFA. In parallel, fish oil significantly changed the liver fatty acid profile given by the HFHS diet, resulting in a more anti-inflammatory phenotype. In conclusion, the present study highlights the significance of marine ω-3 PUFA intake for the health of rats fed a Westernized diet by describing several key metabolic pathways which are protected in liver

    Effects of fish oil and grape seed extract combination on hepatic endogenous antioxidants and bioactive lipids in diet-induced early stages of insulin resistance in rats

    Get PDF
    Diacylglycerols (DAG) and ceramides have been suggested as early predictors of insulinresistance. This study was aimed to examine the combined effects of fish oil (FO) and grape seedextract (GSE) on hepatic endogenous antioxidants, DAG and ceramides in diet-induced early stagesof insulin resistance. Thirty-five rats were fed one of the following diets: (1) a standard diet (STDgroup), (2) a high-fat high-sucrose diet (HFHS group), (3) an HFHS diet enriched with FO (FO group),(4) an HFHS diet enriched with GSE (GSE group) or (5) an HFHS diet enriched with FO and GSE(FO+GSE group). In the liver, endogenous antioxidants were measured using spectrophotometricand fluorometric techniques, and non-targeted lipidomics was conducted for the assessment of DAGand ceramides. After 24 weeks, the FO+GSE group showed increased glutathione peroxidaseactivity, as well as monounsaturated fatty acid and polyunsaturated fatty acid-containing DAG, andlong-chain fatty acid-containing ceramides abundances compared to the STD group. The FO and GSEcombination induced similar activation of the antioxidant system and bioactive lipid accumulation inthe liver than the HFHS diet without supplementation. In addition, the FO and GSE combinationincreased the abundances of polyunsaturated fatty acid-containing DAG in the liver

    Effects of combined d-fagomine and omega-3 PUFAs on gut microbiota subpopulations and diabetes risk factors in rats fed a high-fat diet

    Get PDF
    Food contains bioactive compounds that may prevent changes in gut microbiota associated with Westernized diets. The aim of this study is to explore the possible additive effects of d-fagomine and ω-3 PUFAs (EPA/DHA 1:1) on gut microbiota and related risk factors during early stages in the development of fat-induced pre-diabetes. Male Sprague Dawley (SD) rats were fed a standard diet, or a high-fat (HF) diet supplemented with d-fagomine, EPA/DHA 1:1, a combination of both, or neither, for 24 weeks. The variables measured were fasting glucose and glucose tolerance, plasma insulin, liver inflammation, fecal/cecal gut bacterial subgroups and short-chain fatty acids (SCFAs). The animals supplemented with d-fagomine alone and in combination with ω-3 PUFAs accumulated less fat than those in the non-supplemented HF group and those given only ω-3 PUFAs. The combined supplements attenuated the high-fat-induced incipient insulin resistance (IR), and liver inflammation, while increasing the cecal content, the Bacteroidetes:Firmicutes ratio and the populations of Bifidobacteriales. The functional effects of the combination of d-fagomine and EPA/DHA 1:1 against gut dysbiosis and the very early metabolic alterations induced by a high-fat diet are mainly those of d-fagomine complemented by the anti-inflammatory action of ω-3 PUFAs

    Mechanistically different effects of fat and sugar on insulin resistance, hypertension and gut microbiota in rats

    Get PDF
    Insulin resistance (IR) and impaired glucose tolerance (IGT) are the first manifestations of diet-induced metabolic alterations leading to type-2 diabetes, while hypertension is the deadliest risk factor of cardiovascular disease. The roles of dietary fat and fructose in the development of IR, IGT and hypertension are controversial. We tested the long-term effects of an excess of fat or sucrose (fructose/glucose) on healthy male Wistar Kyoto (WKY) rats. Fat affects IR and IGT earlier than fructose through low-grade systemic inflammation evidenced by liver inflammatory infiltration, increased levels of plasma interleukin-6, prostaglandin E2 and reduced levels of protective short-chain fatty acids without triggering hypertension. Increased populations of gut Enterobacteriales and Escherichia coli may contribute to systemic inflammation through the generation of lipopolysaccharides. Unlike fat, fructose induces increased levels of diacylglycerols (lipid mediators of IR) in the liver, urine F2-isoprostanes (markers of systemic oxidative stress) and uric acid, and triggers hypertension. Elevated populations of Enterobacteriales and E. coli were only detected in rats given an excess of fructose at the end of the study. Dietary fat and fructose trigger IR and IGT in clearly differentiated ways in WKY rats: early low-grade inflammation and late direct lipid toxicity, respectively; gut microbiota plays a role mainly in fat-induced IR; and hypertension is independent of inflammation55 mediated IR. The results provide evidence which suggests that the combination of fat and sugar is potentially more harmful than fat or sugar alone when taken in excess

    A high-fat high-sucrose diet affects the long-term metabolic fate of grape proanthocyanidins in rats

    Get PDF
    Purpose Polyphenol metabolites are key mediators of the biological activities of polyphenols. This study aimed to evaluate the long-term effects of a high-fat high-sucrose (HFHS) diet on the metabolism of proanthocyanidins from grape seed extract (GSE). Methods Adult female Wistar-Kyoto rats were fed a standard (STD) or HFHS diet supplemented or not with GSE for 16 weeks. PA metabolites were determined by targeted HPLC-MS/MS analysis. Results A lower concentration of total microbial-derived PA metabolites was present in urine and the aqueous fraction of faeces in the HFHS + GSE group than in the STD + GSE group. In contrast, a tendency towards the formation of conjugated (epi)catechin metabolites in the HFHS + GSE group was observed. Conclusions These results show that a HFHS diet significantly modifies PA metabolism, probably via: (1) a shift in microbial communities not counteracted by the polyphenols themselves; and (2) an up-regulation of hepatic enzymes

    Hybrid Cyclobutane/Proline-Containing Peptidomimetics: The Conformational Constraint Influences Their Cell-Penetration Ability

    Get PDF
    A new family of hybrid ÎČ,Îł-peptidomimetics consisting of a repetitive unit formed by a chiral cyclobutane-containing trans-ÎČ-amino acid plus a Nα-functionalized trans-Îł-amino-l-proline joined in alternation were synthesized and evaluated as cell penetrating peptides (CPP). They lack toxicity on the human tumoral cell line HeLa, with an almost negligible cell uptake. The dodecapeptide showed a substantial microbicidal activity on Leishmania parasites at 50 ”M but with a modest intracellular accumulation. Their previously published Îł,Îł-homologues, with a cyclobutane Îł-amino acid, showed a well-defined secondary structure with an average inter-guanidinium distance of 8-10 Å, a higher leishmanicidal activity as well as a significant intracellular accumulation. The presence of a very rigid cyclobutane ÎČ-amino acid in the peptide backbone precludes the acquisition of a defined conformation suitable for their cell uptake ability. Our results unveiled the preorganized charge-display as a relevant parameter, additional to the separation among the charged groups as previously described. The data herein reinforce the relevance of these descriptors in the design of CPPs with improved properties.The authors would like to thank the staff at the Servei de MicroscĂČpia de la Universitat AutĂČnoma de Barcelona and the Peptide Synthesis Unit of the NANBIOSIS ICTS (U3, CIBER BBN-IQAC-CSIC) for technical assistance.Peer reviewe

    Outcomes from elective colorectal cancer surgery during the SARS-CoV-2 pandemic

    Get PDF
    This study aimed to describe the change in surgical practice and the impact of SARS-CoV-2 on mortality after surgical resection of colorectal cancer during the initial phases of the SARS-CoV-2 pandemic

    A high-fat high-sucrose diet affects the long-term metabolic fate of grape proanthocyanidins in rats

    No full text
    Purpose Polyphenol metabolites are key mediators of the biological activities of polyphenols. This study aimed to evaluate the long-term effects of a high-fat high-sucrose (HFHS) diet on the metabolism of proanthocyanidins from grape seed extract (GSE). Methods Adult female Wistar-Kyoto rats were fed a standard (STD) or HFHS diet supplemented or not with GSE for 16 weeks. PA metabolites were determined by targeted HPLC-MS/MS analysis. Results A lower concentration of total microbial-derived PA metabolites was present in urine and the aqueous fraction of faeces in the HFHS + GSE group than in the STD + GSE group. In contrast, a tendency towards the formation of conjugated (epi)catechin metabolites in the HFHS + GSE group was observed. Conclusions These results show that a HFHS diet significantly modifies PA metabolism, probably via: (1) a shift in microbial communities not counteracted by the polyphenols themselves; and (2) an up-regulation of hepatic enzymes
    corecore