639 research outputs found

    A Supramolecular Ice Growth Inhibitor

    Get PDF
    Safranine O, a synthetic dye, was found to inhibit growth of ice at millimolar concentrations with an activity comparable to that of highly evolved antifreeze glycoproteins. Safranine inhibits growth of ice crystals along the crystallographic a-axis, resulting in bipyramidal needles extended along the directions as well as and plane-specific thermal hysteresis (TH) activity. The interaction of safranine with ice is reversible, distinct from the previously reported behavior of antifreeze proteins. Spectroscopy and molecular dynamics indicate that safranine forms aggregates in aqueous solution at micromolar concentrations. Metadynamics simulations and aggregation theory suggested that as many as 30 safranine molecules were preorganized in stacks at the concentrations where ice growth inhibition was observed. The simulations and single-crystal X-ray structure of safranine revealed regularly spaced amino and methyl substituents in the aggregates, akin to the ice-binding site of antifreeze proteins. Collectively, these observations suggest an unusual link between supramolecular assemblies of small molecules and functional proteins

    Structure, Energetics, and Dynamics of Screw Dislocations in Even n-Alkane Crystals

    Get PDF
    Spiral hillocks on n-alkane crystal surfaces were observed immediately after Frank recognized the importance of screw dislocations for crystal growth, yet their structures and energies in molecular crystals remain ill-defined. To illustrate the structural chemistry of screw dislocations that are responsible for plasticity in organic crystals and upon which the organic electronics and pharmaceutical industries depend, molecular dynamics was used to examine heterochiral dislocation pairs with Burgers vectors along [001] in n-hexane, n-octane, and n-decane crystals. The cores were anisotropic and elongated in the (110) slip plane, with significant local changes in molecular position, orientation, conformation, and energy. This detailed atomic level picture produced a distribution of strain consistent with linear elastic theory, giving confidence in the simulations. Dislocations with doubled Burgers vectors split into pairs with elementary displacements. These results suggest a pathway to understanding the mechanical properties and failure associated with elastic and plastic deformation in soft crystals

    Dislocation-Actuated Growth and Inhibition of Hexagonal L-Cystine Crystallization at the Molecular Level

    Get PDF
    Crystallization of L-cystine is a critical process in the pathogenesis of kidney stone formation in cystinuria, a disorder affecting more than 20 000 individuals in the United States alone. In an effort to elucidate the crystallization of L-cystine and the mode of action of tailored growth inhibitors that may constitute effective therapies, real-time in situ atomic force microscopy has been used to investigate the surface micromorphology and growth kinetics of the {0001} faces of L-cystine at various supersaturations and concentrations of the growth inhibitor L-cystine dimethylester (CDME). Crystal growth is actuated by screw dislocations on the {0001} L-cystine surface, producing hexagonal spiral hillocks that are a consequence of six interlacing spirals of anisotropic molecular layers. The high level of elastic stress in the immediate vicinity around the dislocation line results in a decrease in the step velocities and a corresponding increase in the spacing of steps. The kinetic curves acquired in the presence of CDME conform to the classical Cabrera–Vermilyea model. Anomalous birefringence in the {101̅0} growth sectors, combined with computational modeling, supports a high fidelity of stereospecific binding of CDME, in a unique orientation, exclusively at one of the six crystallographically unique projections on the {1010} plane

    Structural Correspondence of Solution, Liquid Crystal, and Crystalline Phases of the Chromonic Mesogen Sunset Yellow

    Get PDF
    The azo dye, sunset yellow, is a prototypical, chromonic liquid crystal in which assembly in aqueous solution at high volume fraction leads to lyotropic mesophases with a “package of properties distinct in almost every aspect” (Lydon, J. Curr. Opin. Colloid Interface Sci. 2004, 8, 480). In particular, the isotropic to nematic transition in such phases, the consequence of stacking of dye molecules in chains, is difficult to bring into correspondence with athermal theories for rigid rods as well as modifications that consider chain interactions with one another. Chromonic mesogens, small molecules that stack to form lyotropic liquid crystals, prompt structural questions that have yet to be answered; a full understanding of structure should inform colligative properties. Herein, the single crystal structure of a guanidinium salt of the sunset yellow dianion, a known chromonic mesogen, is reported. The compound crystallizes as a dihydrate, tetrahydrofuran solvate in the orthorhombic space group Pnna, with a = 6.8426(5) Å, b = 20.048(1) Å, c = 21.466(2) Å. The sunset yellow molecules, point group approximately Cs, are disordered about a crystallographic diad axis.The structure is informative because pairwise interactions in the disordered crystal structure show a remarkable correspondence with the stereochemistry of sunset yellow molecules in solution and in the liquid crystal phase. The solution structure is here simulated by the combination of molecular dynamics,metadynamics, and quantum chemical computations. The comparable disorder in the fluid and solid states suggests the possibility that stacked aggregates adhere to growing crystals intact. Computations were used to evaluate proposals that stacking faults and branching points lower the X-ray correlation lengths while preserving extended structures. Evidence is found forstacking faults but not branches. The solution stereochemistry and stereodynamics has implications for the geometry of long rods, for which understanding is a prerequisite for reckoning properties of vexing chromonic mesophases

    Definition, conservation and epigenetics of housekeeping and tissue-enriched genes

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Housekeeping genes (HKG) are constitutively expressed in all tissues while tissue-enriched genes (TEG) are expressed at a much higher level in a single tissue type than in others. HKGs serve as valuable experimental controls in gene and protein expression experiments, while TEGs tend to represent distinct physiological processes and are frequently candidates for biomarkers or drug targets. The genomic features of these two groups of genes expressed in opposing patterns may shed light on the mechanisms by which cells maintain basic and tissue-specific functions.</p> <p>Results</p> <p>Here, we generate gene expression profiles of 42 normal human tissues on custom high-density microarrays to systematically identify 1,522 HKGs and 975 TEGs and compile a small subset of 20 housekeeping genes which are highly expressed in all tissues with lower variance than many commonly used HKGs. Cross-species comparison shows that both the functions and expression patterns of HKGs are conserved. TEGs are enriched with respect to both segmental duplication and copy number variation, while no such enrichment is observed for HKGs, suggesting the high expression of HKGs are not due to high copy numbers. Analysis of genomic and epigenetic features of HKGs and TEGs reveals that the high expression of HKGs across different tissues is associated with decreased nucleosome occupancy at the transcription start site as indicated by enhanced DNase hypersensitivity. Additionally, we systematically and quantitatively demonstrated that the CpG islands' enrichment in HKGs transcription start sites (TSS) and their depletion in TEGs TSS. Histone methylation patterns differ significantly between HKGs and TEGs, suggesting that methylation contributes to the differential expression patterns as well.</p> <p>Conclusion</p> <p>We have compiled a set of high quality HKGs that should provide higher and more consistent expression when used as references in laboratory experiments than currently used HKGs. The comparison of genomic features between HKGs and TEGs shows that HKGs are more conserved than TEGs in terms of functions, expression pattern and polymorphisms. In addition, our results identify chromatin structure and epigenetic features of HKGs and TEGs that are likely to play an important role in regulating their strikingly different expression patterns.</p

    Electronic structure of phosphorus and arsenic d-doped germanium

    Get PDF
    Density functional theory in the LDA+U approximation is used to calculate the electronic structure ofgermanium d doped with phosphorus and arsenic. We characterize the principal band minima of the twodimensional electron gas created by d doping and their dependence on the dopant concentration. Populated first at low concentrations is a set of band minima at the perpendicular projection of the bulk conduction band minima at L into the (kx ,ky ) plane. At higher concentrations, band minima at and become involved. Valley splittings and effective masses are computed using an explicit-atom approach, taking into account the effects of disorder in the arrangement of dopant atoms in the d plane

    Towards Reliable Automatic Protein Structure Alignment

    Full text link
    A variety of methods have been proposed for structure similarity calculation, which are called structure alignment or superposition. One major shortcoming in current structure alignment algorithms is in their inherent design, which is based on local structure similarity. In this work, we propose a method to incorporate global information in obtaining optimal alignments and superpositions. Our method, when applied to optimizing the TM-score and the GDT score, produces significantly better results than current state-of-the-art protein structure alignment tools. Specifically, if the highest TM-score found by TMalign is lower than (0.6) and the highest TM-score found by one of the tested methods is higher than (0.5), there is a probability of (42%) that TMalign failed to find TM-scores higher than (0.5), while the same probability is reduced to (2%) if our method is used. This could significantly improve the accuracy of fold detection if the cutoff TM-score of (0.5) is used. In addition, existing structure alignment algorithms focus on structure similarity alone and simply ignore other important similarities, such as sequence similarity. Our approach has the capacity to incorporate multiple similarities into the scoring function. Results show that sequence similarity aids in finding high quality protein structure alignments that are more consistent with eye-examined alignments in HOMSTRAD. Even when structure similarity itself fails to find alignments with any consistency with eye-examined alignments, our method remains capable of finding alignments highly similar to, or even identical to, eye-examined alignments.Comment: Peer-reviewed and presented as part of the 13th Workshop on Algorithms in Bioinformatics (WABI2013

    Mapping the genetic architecture of gene expression in human liver

    Get PDF
    Genetic variants that are associated with common human diseases do not lead directly to disease, but instead act on intermediate, molecular phenotypes that in turn induce changes in higher-order disease traits. Therefore, identifying the molecular phenotypes that vary in response to changes in DNA and that also associate with changes in disease traits has the potential to provide the functional information required to not only identify and validate the susceptibility genes that are directly affected by changes in DNA, but also to understand the molecular networks in which such genes operate and how changes in these networks lead to changes in disease traits. Toward that end, we profiled more than 39,000 transcripts and we genotyped 782,476 unique single nucleotide polymorphisms (SNPs) in more than 400 human liver samples to characterize the genetic architecture of gene expression in the human liver, a metabolically active tissue that is important in a number of common human diseases, including obesity, diabetes, and atherosclerosis. This genome-wide association study of gene expression resulted in the detection of more than 6,000 associations between SNP genotypes and liver gene expression traits, where many of the corresponding genes identified have already been implicated in a number of human diseases. The utility of these data for elucidating the causes of common human diseases is demonstrated by integrating them with genotypic and expression data from other human and mouse populations. This provides much-needed functional support for the candidate susceptibility genes being identified at a growing number of genetic loci that have been identified as key drivers of disease from genome-wide association studies of disease. By using an integrative genomics approach, we highlight how the gene RPS26 and not ERBB3 is supported by our data as the most likely susceptibility gene for a novel type 1 diabetes locus recently identified in a large-scale, genome-wide association study. We also identify SORT1 and CELSR2 as candidate susceptibility genes for a locus recently associated with coronary artery disease and plasma low-density lipoprotein cholesterol levels in the process. © 2008 Schadt et al

    DNA copy number, including telomeres and mitochondria, assayed using next-generation sequencing

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>DNA copy number variations occur within populations and aberrations can cause disease. We sought to develop an improved lab-automatable, cost-efficient, accurate platform to profile DNA copy number.</p> <p>Results</p> <p>We developed a sequencing-based assay of nuclear, mitochondrial, and telomeric DNA copy number that draws on the unbiased nature of next-generation sequencing and incorporates techniques developed for RNA expression profiling. To demonstrate this platform, we assayed UMC-11 cells using 5 million 33 nt reads and found tremendous copy number variation, including regions of single and homogeneous deletions and amplifications to 29 copies; 5 times more mitochondria and 4 times less telomeric sequence than a pool of non-diseased, blood-derived DNA; and that UMC-11 was derived from a male individual.</p> <p>Conclusion</p> <p>The described assay outputs absolute copy number, outputs an error estimate (p-value), and is more accurate than array-based platforms at high copy number. The platform enables profiling of mitochondrial levels and telomeric length. The assay is lab-automatable and has a genomic resolution and cost that are tunable based on the number of sequence reads.</p
    corecore