169 research outputs found

    Plastics in Heritage Collections: Poly(vinyl chloride) Degradation and Characterization

    Get PDF
    Museums and galleries house increasingly large collections of objects and contemporary art made of plastic materials, many of which undergo rapid material change. The main degradation processes of poly(vinyl chloride) (PVC) are elimination of HCl and plasticizer migration or leaching. This results in visible discolouration, stickiness and cracking. Degradation is known to be a multi-stage process that includes HCl elimination, formation of conjugated polyenes and cross-linking. Elimination of HCl begins due to structural irregularities (allylic and tertiary chlorides) and results in the formation of polyenes. When at least 7 conjugated double bonds are present, discolouration of PVC becomes visible. Non-invasive techniques, such as IR and Raman spectroscopy are used for polymer identification and plasticizer quantification. Plasticizer degradation and particularly the late stages of PVC degradation can be investigated using SEC, GC-MS, TGA and DSC. Studies in heritage collections have revealed that, apart from HCl, PVC objects emit 2-ethylhexanol and other volatile degradation products, however, there is currently no indication that HCl is emitted at usual indoor conditions. There seems to be a general lack of systematic research into PVC degradation at the conditions of storage and display, which could result in the development of dose-response functions and in the development of preventive conservation guidelines for the management of PVC collections

    Damage function for poly(vinyl chloride) in heritage collections

    Get PDF
    Yellowing of plastic objects as a consequence of chemical degradation is a common heritage conservation challenge. In the case of poly(vinyl chloride) elimination of hydrogen chloride leads to the formation of polyene sequences that act as chromophores. The objective of this work was to quantitatively evaluate the rate of degradation observed as yellowing, as relevant to room conditions during long-term storage of heritage collections. Degradation was quantified as increase in the b* colour coordinate during accelerated degradation at 50 and 70 °C as a function of temperature, relative humidity, plasticizer content, and polymer molecular weight. The significance of each variable was investigated with multiple linear regression. Lower temperature, lower relative humidity, higher polymer molecular weight and higher plasticizer content were associated with lower degradation rates. The activation energy of 86 kJ/mol was calculated. The concept of ‘1- °C-equivalent’ is introduced to enable variable prioritisation from a heritage management aspect. The resulting model can be used to shape environmental management guidelines and identify the most vulnerable objects in heritage collections

    Developing a risk assessment score for patients with cancer during the coronavirus disease 2019 pandemic

    Get PDF
    The novel coronavirus (CoV) pandemic is a serious threat for patients with cancer, who have an immunocompromised status and are considered at high risk of infections. Data on the novel CoV respiratory disease (coronavirus disease 2019 [COVID-19]) in patients with cancer are still limited. Unlike other common viruses, CoVs have not been shown to cause a more severe disease in immunocompromised subjects. Along with direct viral pathogenicity, in some individuals, CoV infection triggers an uncontrolled aberrant inflammatory response, leading to lung tissue damage. In patients with cancer treated with immunotherapy (e.g. immune checkpoint inhibitors), COVID-19 may therefore represent a serious threat. After a thorough review of the literature on CoV pathogenesis and cancer, we selected several shared features to define which patients can be considered at higher risk of COVID-19. We combined these clinical and laboratory variables, with the aim of developing a score to weight the risk of COVID-19 in patients with cancer

    Machine learning-assisted non-destructive plasticizer identification and quantification in historical PVC objects based on IR spectroscopy

    Get PDF
    Non-destructive spectroscopic analysis combined with machine learning rapidly provides information on the identity and content of plasticizers in PVC objects of heritage value. For the first time, a large and diverse collection of more than 100 PVC objects in different degradation stages and of diverse chemical compositions was analysed by chromatographic and spectroscopic techniques to create a dataset used to construct classification and regression models. Accounting for this variety makes the model more robust and reliable for the analysis of objects in museum collections. Six different machine learning classification algorithms were compared to determine the algorithm with the highest classification accuracy of the most common plasticizers, based solely on the spectroscopic data. A classification model capable of the identification of di(2-ethylhexyl) phthalate, di(2-ethylhexyl) terephthalate, diisononyl phthalate, diisodecyl phthalate, a mixture of diisononyl phthalate and diisodecyl phthalate, and unplasticized PVC was constructed. Additionally, regression models for quantification of di(2-ethylhexyl) phthalate and di(2-ethylhexyl) terephthalate in PVC were built. This study of real-life objects demonstrates that classification and quantification of plasticizers in a general collection of degraded PVC objects is possible, providing valuable data to collection managers

    Sustained release of antimicrobials from double-layer nanofiber mats for local treatment of periodontal disease, evaluated using a new micro flow-through apparatus

    Get PDF
    Periodontal disease is a widespread chronic condition associated with degradation of periodontal tissues that requires more effective approaches for its treatment. Thus, the aim was to develop a nanodelivery system for local application of antimicrobials, with evaluation in vitro using a newly developed micro flow-through apparatus that simulates local in-vivo conditions in the periodontal pocket: small resting volume, and low gingival crevicular fluid flow rate. We successfully developed a double-layer nanofiber mat composed of a chitosan/ poly(ethylene) oxide nanofiber layer with 30% ciprofloxacin, and a poly(ε-caprolactone) nanofiber layer with 5% metronidazole. The precisely designed composition enabled sustained in-vitro release of the antimicrobials according to their specific drug release mechanisms. The rate-limiting step of ciprofloxacin release was its own low solubility at pH 7.4, when there was excess of solid drug present in the delivery system. In contrast, sustained release of metronidazole was due to slow penetration of dissolution medium through the hydrophobic poly(ε-caprolactone) nanofiber layer. The double-layer nanofiber mat developed showed antibacterial activity against Escherichia coli and Aggregatibacter actinomycetemcomitans based on plate antibiogram assays. The antimicrobial concentrations released from the nanofiber mats determined using the developed apparatus were above the minimal inhibitory concentrations against the periodontal pathogens for up to 7 days, which is valuable information for prediction of the efficacy of the nanodelivery system. Although this apparatus was specifically designed for characterization of formulations associated with treatments for periodontal disease, its applicability is much wide, as for development of any delivery system for application at target sites that have similar local conditions

    Targeting immune-related biological processes in solid tumors : we do need biomarkers

    Get PDF
    Immunotherapy has become the standard-of-care in many solid tumors. Despite the significant recent achievements in the diagnosis and treatment of cancer, several issues related to patients' selection for immunotherapy remain unsolved. Multiple lines of evidence suggest that, in this setting, the vision of a single biomarker is somewhat na\uefve and imprecise, given that immunotherapy does not follow the rules that we have experienced in the past for targeted therapies. On the other hand, additional immune-related biomarkers that are reliable in real-life clinical practice remain to be identified. Recently, the immune-checkpoint blockade has been approved in the US irrespective of the tumor site of origin. Further histology-agnostic approvals, coupled with with tumor-specific companion diagnostics and guidelines, are expected in this field. In addition, immune-related biomarkers can also have a significant prognostic value. In this review, we provide an overview of the role of these biomarkers and their characterization in the management of lung cancer, melanoma, colorectal cancer, gastric cancer, head and neck cancer, renal cell carcinoma, urothelial cancers, and breast cancer

    Escherichia coli Bacteriocins: Antimicrobial Efficacy and Prevalence among Isolates from Patients with Bacteraemia

    Get PDF
    Bacteriocins are antimicrobial peptides generally active against bacteria closely related to the producer. Escherichia coli produces two types of bacteriocins, colicins and microcins. The in vitro efficacy of isolated colicins E1, E6, E7, K and M, was assessed against Escherichia coli strains from patients with bacteraemia of urinary tract origin. Colicin E7 was most effective, as only 13% of the tested strains were resistant. On the other hand, 32%, 33%, 43% and 53% of the tested strains exhibited resistance to colicins E6, K, M and E1. Moreover, the inhibitory activity of individual colicins E1, E6, E7, K and M and combinations of colicins K, M, E7 and E1, E6, E7, K, M were followed in liquid broth for 24 hours. Resistance against individual colicins developed after 9 hours of treatment. On the contrary, resistance development against the combined action of 5 colicins was not observed. One hundred and five E. coli strains from patients with bacteraemia were screened by PCR for the presence of 5 colicins and 7 microcins. Sixty-six percent of the strains encoded at least one bacteriocin, 43% one or more colicins, and 54% one or more microcins. Microcins were found to co-occur with toxins, siderophores, adhesins and with the Toll/Interleukin-1 receptor domain-containing protein involved in suppression of innate immunity, and were significantly more prevalent among strains from non-immunocompromised patients. In addition, microcins were highly prevalent among non-multidrug-resistant strains compared to multidrug-resistant strains. Our results indicate that microcins contribute to virulence of E. coli instigating bacteraemia of urinary tract origin

    The role of CEA, CYFRA21-1 and NSE in monitoring tumor response to Nivolumab in advanced non-small cell lung cancer (NSCLC) patients

    Get PDF
    Background: CEA, CYFRA21-1 and NSE are tumor markers used for monitoring the response to chemotherapy in advanced adenocarcinoma, squamous cell carcinoma and small-cell lung cancer, respectively. Their role in cancer immunotherapy needs to be elucidated. Methods: Patients with advanced non-small cell lung cancer (NSCLC) were treated with nivolumab 3 mg/kg every 2 weeks within the Italian Nivolumab Expanded Access Program. Blood samples were collected at baseline, at each cycle up to cycle 5 and then every two cycles until patient's withdrawn from the study. All patients underwent a CT-scan after every 4 cycles of treatment and responses were classified according to RECIST 1.1. The biomarkers serum levels were measured with a chemiluminescent microparticle immunoassay for CEA and with an immuno radiometric assay for CYFRA21-1 and NSE. The markers values at baseline and after 4 cycles were used to analyze the relationship between their variation over baseline and the tumor response, evaluated as disease control rate (DCR: CR + PR + SD), and survival (PFS and OS). Results: A total of 70 patients were evaluable for the analysis. Overall, a disease control was obtained in 24 patients (35.8%, 4 PR + 20 SD). After 4 cycles of nivolumab a CEA or CYFRA21-1 reduction 65 20% over the baseline was significantly associated with DCR (CEA, p = 0.021; CYFRA21-1, p < 0.001), PFS (CEA, p = 0.028; CYFRA21-1, p < 0.001) and OS (CEA, p = 0.026; CYFRA21-1, p = 0.019). Multivariate analysis confirmed the ability of CYFRA21-1 reduction 65 20% to predict DCR (p = 0.002) and PFS (p < 0.001). Conclusion: The reduction in serum level of CYFRA21-1 or CEA might be a reliable biomarker to predict immunotherapy efficacy in NSCLC patients. NSE was not significant for monitoring the efficacy of nivolumab

    Serum proteomic test in advanced non-squamous non-small cell lung cancer treated in first line with standard chemotherapy

    Get PDF
    Background:VeriStrat is a blood-based proteomic test with predictive and prognostic significance in second-line treatments for non-small cell lung cancer (NSCLC). This trial was designed to investigate the role of VeriStrat in first-line treatment of advanced NSCLC with standard chemotherapy. Here we present the results for 76 non-squamous patients treated with a combination of carboplatin or cisplatin with pemetrexed.Methods:The test-assigned classifications of VeriStrat Good or VeriStrat Poor to samples collected at baseline. The primary end point was progression-free survival (PFS); secondary end points included overall survival (OS) and objective response. Exploratory analyses of end points separately in carboplatin/pemetrexed and cisplatin/pemetrexed subgroups were also conducted.Results:Patients classified as VeriStrat Good had longer PFS and OS than VeriStrat Poor: 6.5 vs 1.6 months and 10.8 vs 3.4 months, respectively; the corresponding hazard ratios (HRs) were 0.36 (P<0.0001) and 0.26 (P<0.0001); they were also more likely to achieve objective response. Prognostic significance of VeriStrat was confirmed in multivariate analysis. Significant differences in OS and PFS between Veristrat classifications were also found when treatment subgroups were analysed separately.Conclusions:The trial demonstrated clinical utility of VeriStrat as a prognostic test for standard first-line chemotherapy of non-squamous advanced NSCLC
    corecore