37 research outputs found

    Commensal-Induced Regulatory T Cells Mediate Protection against Pathogen-Stimulated NF-κB Activation

    Get PDF
    Host defence against infection requires a range of innate and adaptive immune responses that may lead to tissue damage. Such immune-mediated pathologies can be controlled with appropriate T regulatory (Treg) activity. The aim of the present study was to determine the influence of gut microbiota composition on Treg cellular activity and NF-κB activation associated with infection. Mice consumed the commensal microbe Bifidobacterium infantis 35624 followed by infection with Salmonella typhimurium or injection with LPS. In vivo NF-κB activation was quantified using biophotonic imaging. CD4+CD25+Foxp3+ T cell phenotypes and cytokine levels were assessed using flow cytometry while CD4+ T cells were isolated using magnetic beads for adoptive transfer to naïve animals. In vivo imaging revealed profound inhibition of infection and LPS induced NF-κB activity that preceded a reduction in S. typhimurium numbers and murine sickness behaviour scores in B. infantis–fed mice. In addition, pro-inflammatory cytokine secretion, T cell proliferation, and dendritic cell co-stimulatory molecule expression were significantly reduced. In contrast, CD4+CD25+Foxp3+ T cell numbers were significantly increased in the mucosa and spleen of mice fed B. infantis. Adoptive transfer of CD4+CD25+ T cells transferred the NF-κB inhibitory activity. Consumption of a single commensal micro-organism drives the generation and function of Treg cells which control excessive NF-κB activation in vivo. These cellular interactions provide the basis for a more complete understanding of the commensal-host-pathogen trilogue that contribute to host homeostatic mechanisms underpinning protection against aberrant activation of the innate immune system in response to a translocating pathogen or systemic LPS

    Analysis of Pools of Targeted Salmonella Deletion Mutants Identifies Novel Genes Affecting Fitness during Competitive Infection in Mice

    Get PDF
    Pools of mutants of minimal complexity but maximal coverage of genes of interest facilitate screening for genes under selection in a particular environment. We constructed individual deletion mutants in 1,023 Salmonella enterica serovar Typhimurium genes, including almost all genes found in Salmonella but not in related genera. All mutations were confirmed simultaneously using a novel amplification strategy to produce labeled RNA from a T7 RNA polymerase promoter, introduced during the construction of each mutant, followed by hybridization of this labeled RNA to a Typhimurium genome tiling array. To demonstrate the ability to identify fitness phenotypes using our pool of mutants, the pool was subjected to selection by intraperitoneal injection into BALB/c mice and subsequent recovery from spleens. Changes in the representation of each mutant were monitored using T7 transcripts hybridized to a novel inexpensive minimal microarray. Among the top 120 statistically significant spleen colonization phenotypes, more than 40 were mutations in genes with no previously known role in this model. Fifteen phenotypes were tested using individual mutants in competitive assays of intraperitoneal infection in mice and eleven were confirmed, including the first two examples of attenuation for sRNA mutants in Salmonella. We refer to the method as Array-based analysis of cistrons under selection (ABACUS)

    TnphoA and TnphoA' elements for making and switching fusions for study of transcription, translation, and cell surface localization.

    No full text
    We describe a set of elements based on the transposon TnphoA for making transcriptional fusions to the lacZ gene and for making translational fusions to the phoA or lacZ structural gene. Each element can be switched, one for another, by homologous recombination, thereby allowing testing for transcription, translation, or cell surface localization determinants at the same site within a gene. We describe three kinds of elements for making each fusion type. Two kinds are transposition proficient (Tnp+): one encodes kanamycin resistance, and the other encodes tetracycline resistance. The third kind is transposition defective (Tnp-) and encodes kanamycin resistance. In addition, we describe one Tnp- element that has no reporter gene and encodes chloramphenicol resistance; this element is used primarily as a tool to aid in switching fusions. Switching is efficient because each element has in common 254 bp of DNA at the phoA end and 187 bp (or more) of DNA at the IS50R end of TnphoA, and switching is straightforward because individual elements encode different drug resistances. Thus, switched recombinants can be selected as drug-resistant transductants, and they can be recognized as ones that have lost the parental drug resistance and fusion phenotype. Further, switching Tnp+ elements to Tnp- elements reduces problems due to transposition that can arise in P1 crosses or cloning experiments. Some TnphoA and TnphoA' elements cause polar mutations, while others provide an outward promoter for downstream transcription. This feature is especially useful in the determination of operon structures. Strategies for the use of TnphoA and TnphoA' elements in gene analysis are also described

    Involvement of phosphotransacetylase, acetate kinase, and acetyl phosphate synthesis in control of the phosphate regulon in Escherichia coli.

    No full text
    Two controls of the phosphate (PHO) regulon require sensor proteins that are protein kinases that phosphorylate the regulator, PhoB, which in turn activates transcription only when phosphorylated. Pi control requires the Pi sensor PhoR; the other control is Pi independent and requires the sensor CreC (formerly called PhoM). Here we describe an additional control of the PHO regulon which is Pi independent and requires neither PhoR nor CreC. This control is regulated by a two-step pathway in carbon metabolism in which acetyl coenzyme A, Pi, and ADP are converted into acetate, coenzyme A, and ATP via the enzymes phosphotransacetylase (Pta) and acetate kinase (AckA). It responds to the synthesis of acetyl phosphate, an intermediate in the Pta-AckA pathway. Since the synthesis of acetyl phosphate via this pathway leads to the incorporation of Pi into ATP, the primary phosphoryl donor in metabolism, we propose that a regulatory coupling(s) may exist between the PHO regulon, which encodes genes for Pi uptake, and genes for enzymes in central metabolism for incorporation of Pi into ATP. Regulatory interactions of this sort may be important in global control. Further, it provides a functional basis for the concept of cross-regulation in the PHO regulon. This is also the first evidence that acetyl phosphate may have a role as an effector of gene regulation
    corecore